• Title/Summary/Keyword: Equivalent Impedance

Search Result 489, Processing Time 0.023 seconds

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

An equivalent Circuit Model of Transformer Coupled Plasma Source (축전 용량이 고려된 평판형 유도 결합 플라즈마 원의 등가회로 모델)

  • Kim, Jeong-Mi;Kwon, D.C.;Yoon, N.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1760-1762
    • /
    • 2002
  • In this work we develop an equivalent circuit model of TCP(transformer coupled plasma) source and investigate matching characteristic. The developed circuit model includes transmission line, standard-type impedance matching network and displacement current in the plasma source. The impedance of TCP is calculated by previously developed program for various source parameters and dependance of components of matching impedance on the value of source impedance is investigated.

  • PDF

A Study on the Lateral Dynamics of a Train using Equivalent System (등가계를 이용한 열차의 횡방향 거동 연구)

  • 박동일;임진수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.345-352
    • /
    • 1998
  • The dynamic analysis of a train system has tended to analyze one vehicle or subsystem of that rather than to analyze entire vehicles. But, the speeding and lightening of a train requires more accurate analysis. Thus, the analysis of entire vehicles is required but it spends much time. Therefore, it is needed to find out the new analytic method which is more accurate and efficient. This paper suggests a new method for analyzing a multi-vehicle system more efficiently, using‘mechanical impedance’At first, get the impedance of vehicles which influence the dynamics of the object car, through analyzing the dynamics of a vehicle. ‘Equivalent system’, a simple mechanical system, of which the impedance is similar to that ,is proposed. Then, the equivalent system was applied to a vehicle and it showed that the equivalent system works like a real vehicle system. Finally, we tried non-linear analysis of a vehicle to which the equivalent system is applied.

  • PDF

New Modeling Method for an Electrodeless Fluorescent Lamp Using the Relation of Lamp Output Power and the Modeling Coefficients of the Lamp (무전극램프의 출력전력 변화에 따른 새로운 모델링 기법)

  • Lim, Byoung-Noh;Jang, Mog-Soon;Sin, Dong-Seok;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1626-1631
    • /
    • 2007
  • This paper presents a new modeling method using lamp output power and the modeling coefficients of the lamp. The proposed method utilizes the lamp modeling coefficients such as equivalent impedance Z(p), coupling coefficient of the transformer k(p), turns ratio of the transformer n(p), and plasma resistance Rp(p) as a function of lamp output power. The equivalent impedance Z(p) was developed from the equivalent resistance Req(p) and equivalent inductance Leq(p) of the lamp. Simulation and experimental results of the proposed model are presented in order to validate the proposed method. The modeling method can use to design an impedance matching circuit for a Class-D inverter.

Equivalent-circuit Analysis of ITO/Alq3/Al Organic Light-emitting Diode

  • Chung, Dong-Hoe;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.131-134
    • /
    • 2007
  • An $ITO/Alq_3/Al$ structure was used to study complex impedance of $Alq_3$ based organic light-emitting diodes. Equivalent circuit was analyzed in a device structure of $ITO/Alq_3/Al$ with a thickness layer of $Alq_3$ of 100 nm. The obtained impedance was able to be fitted using equivalent circuit model of parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance of $R_s$.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Analysis of the Bird-cage Receiver Coil of a MRI System Employing a Equivalent Circuit Model Based on a Transmission Matrix (전송행렬 기반 등가 회로 모델을 이용한 자기공명영상 장치용 새장형 수신 코일 해석)

  • Kim, Hyun Deok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1024-1029
    • /
    • 2017
  • A novel analytic solution has been derived for the bird-cage receiver coil of a magnetic resonance imaging (MRI) system, which is widely used in 3-dimensional medical imaging, by transforming the coil into an equivalent circuit model by using a transmission matrix-based circuit analysis. The bird-cage coil composed of N legs is divided into a cell for which input impedance is to be analyzed and the remaining N-1 cells, and then a transmission matrix corresponding to the N-1 cells is converted into a circuit to transform the 3-dimensional bird-cage coil into the 2-dimensional equivalent circuit model, which is suitable to derive the analytic solution for the input impedance. The proposed method derives directly the analytic solution for the input impedance at an arbitrary point of the coil unlike the conventional analytic solution of a bird-cage coil, so that it can be used not only for resonance frequency calculations but also for various coil characteristics analyses. Since the analytic solution agreed well with the results of computational simulations, it can be useful for the impedance matching of a coil and the analysis and the design of a multi-tune bird-cage coil.

Effects of Fabrication Process Variation on Impedance of Neural Probe Microelectrodes

  • Cho, Il Hwan;Shin, Hyogeun;Lee, Hyunjoo Jenny;Cho, Il-Joo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1138-1143
    • /
    • 2015
  • Effects of fabrication process variations on impedance of microelectrodes integrated on a neural probe were examined through equivalent circuit modeling and SPICE simulation. Process variation and the corresponding range were estimated based on experimental data. The modeling results illustrate that the process variation induced by metal etching process was the dominant factor in impedance variation. We also demonstrate that the effect of process variation is frequency dependent. Another process variation that was examined in this work was the thickness variation induced by deposition process. The modeling results indicate that the effect of thickness variation on impedance is negligible. This work provides a means to predict the variations in impedance values of microelectrodes on neural probe due to different process variations.

Temperature-dependent dielectric relaxation in ITO/Alq3/Al organic light-emitting diodes

  • Ahn, Joonho;Kim, Tae Wan;Lee, Won Jae
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.163-165
    • /
    • 2012
  • Impedance spectroscopy informs electrical properties of materials as accumulated charges, contact status between electrode and organic materials. We carried out impedance spectroscopy of organic light-emitting diodes as ITO/Alq3(60 nm)/Al on temperatures from 10 K to 300 K. The result described Z'-Z" plot, cole-cole plot and dielectric relaxation time τ. Z'-Z" plot means that real and imaginary part of materials in organic and electrode by frequencies and temperature. Z' as real part of impedance by applied frequency depending on temperature shows the plateau in low frequency region as Rs+ Rp and over 100 kHz in high frequency region as Rs. Cole-cole plot shows resistance of materials in equivalent circuit of the device by temperatures. And equivalent circuit and dielectric relaxation could be accomplished by using the complex impedance analysis.

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.