• Title/Summary/Keyword: Equivalent Electrical Circuit Modeling(EECM)

Search Result 3, Processing Time 0.019 seconds

Systematic Approach of Internal Parameters for Equivalent Electrical-Circuit Modeling(EECM) of a Li4Ti5O12(LTO) cell (Li4Ti5O12(LTO) 배터리 등가회로 모델링을 위한 내부 파라미터 체계적 해석)

  • Lee, Pyeong-Yeon;Yoon, Chang-O;Park, Jin-Hyeong;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This study introduces a systematic approach to selecting the internal parameters applied to the equivalent electrical-circuit model (EECM) of a lithium titanium oxide ($Li_4Ti_5O_{12}$; LTO) rechargeable cell. Based on the dynamic characteristic of the cell, a simplified EECM consisting of an open-circuit voltage (OCV), an ohmic resistance, and an RC ladder is fabricated. To select the internal parameters of a simplified EECM, experiments on discharge capacity, OCV, and discharge/charge resistances are performed using hybrid pulse power characterization and direct current internal resistance (DCIR) measurements over the full state-of-charge (SOC) range. The experimental results of the LTO rechargeable cell highlight the importance of correct selection of internal parameters that can reduce EECM errors. This study clearly provides experimental procedures, internal parameters results, and EECM guidelines for adaptive control-based SOC estimation for LTO rechargeable cells.

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.

C-rate based electrical characteristics and equivalent circuit modeling of 18650 cylindrical Li-ion battery for nuclear power plant application (원전 비상전원 적용성 판단을 위한 다양한 C-rate 기반 원통형 리튬이온 배터리의 전기적 특성분석 및 모델링)

  • Kim, Gunwoo;Park, Seongyun;Park, Jinhyeong;Kim, Jonghoon;Park, Sungbaek;Kim, Youngmi
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.667-674
    • /
    • 2019
  • The recent incidents of Nuclear Power Plant(NPP) gave rise to a total power outage caused by the loss of the functions of the off-site and the emergency power supply. Currently, emergency power supply of NPP have been taken into account by Li-ion batteries instead of existing lead-acid batteries. In order to judge the applicability of the cylindrical Li-ion battery, it is necessary to analysis the results of various electrical tests. This paper investigates the basic electrical characteristics test of three types of cylindrical batteries in order to select the most suitable battery and estimate state of battery through equivalent circuit model and propose method to solve the problem.