• Title/Summary/Keyword: Equivalent Diameter

Search Result 303, Processing Time 0.032 seconds

A Study on the Aerodynamic Diameter of Flame-generated Aggregates (화염에서 생성된 응집체의 공기역학적 입경에 대한 연구)

  • Kwon, Moon-Seok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.600-604
    • /
    • 2001
  • The relation between the aerodynamic diameter and some morphological parameters was studied for flame-generated aggregates. $SiO_{2}$ aggregates were generated from $SiCl_{4}$ in premixed methane/air flames. These aggregates were sampled and classified according to their aerodynamic diameter by a cascade impactor; moreover, computer program was developed and tested to find the equivalent area diameter and the fractal dimension of the aggregates. We calculated the parameters from the digitized images of the aggregate TEM micrographs. The aerodynamic diameters of the sampled aggregates were larger than $0.4{\mu}m$ in this experiment. In most cases, fractal dimension of their projection image was very close to 2.0 for these large aggregates. It was found that the equivalent area diameter of these aggregates was approximately three times larger than the Stokes' diameter of them.

  • PDF

Determination of the Static Rigidity of the End Mill Using Neural Network (신경망을 이용한 엔드밀의 정적 강성 결정)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.143-152
    • /
    • 1997
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.

  • PDF

Simulation of Aggregate Slump Test Using Equivalent Sphere Particle in DEM (등가 구형입자를 이용한 DEM에서의 골재 슬럼프 실험 모사)

  • Yun, Tae Young;Ahn, Sang Hyeok;Nam, Jueong Hee;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES: Simulation of aggregate slump test using equivalent sphere particle in DEM and its validity evaluation against lab aggregate slump test METHODS : In this research, aggregate slump tests are performed and compared with DEM simulation. To utilize spheric particles in YADE, equivalent sphere diameter concept is applied. As verification measures, the volume in slump cone filled with aggregate is used and it is compared with volume in slump cone filled with equivalent sphere particle. Slump height and diameter are also used to evaluate the suggested numerical method with equivalent concept RESULTS : Simulation test results show good agrement with lab test results in terms of loose packing volume, height and diameter of slumped particle clump. CONCLUSIONS : It is concluded that numerical simulation using DEM is applicable to evaluate the effect of aggregate morphological property in loose packing and optimum gradation determination based on the aggregate slump test simulation result.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Estimation of Equivalent Diameter for Cross Shaped Vertical Drain Installed in Weak Clay Soils (연약점성토 지반에 타설된 십자형배수재의 등가직경 산정)

  • 장연수;김영우;김수삼
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, the consolidation efficiency and the equivalent diameter of the cross shaped drain are examined by using the laboratory test and the numerical model, and the results are compared with those of the band shaped drain. The equivalent diameter of the tested drains is back-calculated from the laboratory experiment and compared with those calculated from the formula suggested in the literature. The efficiency of the cross shaped drain is evaluated by using the 3-D flow program which was validated by the settlement-time test fill data. The results of laboratory test show that the equivalent diameter of the band shaped drain was close to the Rixner's formula and that of the cross shaped drain was fit to the following formula: $d_w\;=\; \\tarc{3}{4}.(b+t)$The results of the numerical analysis show that the cross shaped drain can reduce the consolidation time by 9-10% from that for the band shaped drain. The equivalent diameter obtained from the numerical flow model by using the field data is 3.5 times smaller than that obtained from the laboratory consolidation test.

  • PDF

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

Pressure Losses in PVC Pipe and Fittings (PVC 배관부품의 마찰 손실)

  • Cho, Sung-Hwan;Choi, Jin-Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.209-214
    • /
    • 1984
  • Friction factors and equivalent sand roughness of PVC pipe fittings have been studied by experiments in the Reynolds number range of $2,000\~70,000$. PVC pipe fittings studied are straight pipes, $90^{\circ}$ elbows and tees with 15, 25, and 40mm in norminal diameter, all manufactured in Korea with KS mark approval. Equivalent relative roughness of PVC pipes obtained lies between smooth pipe and 0.002. The study shows that equivalent sand roughness of PVC pipes increasses in proportion of the square root of pipe diameter , and can be approximately abtained by multiplying 4 to the root mean square value measured by metal surface roughness tester. Loss coefficient of PVC $90^{\circ}$ elbows decreases slowly with increasing Reynolds number. Loss coeffiicent of tees is a function of ratio of flow rates and Reynolds number.

  • PDF

Hydraulic Analysis and Sizing of Inlet-Pipe Diameter for the Water Distribution Network (상수급수관 인입관경 제안 및 수리해석)

  • Shin, Sung-kyo;Kim, Eun-ju;Choi, Si-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • The objective of this study is to determine the appropriate size of the inlet pipe diameter and thereby conduct hydraulic analysis for the Korean water distribution network. To this end, the data tables for equivalent pipe diameters and outflow rates presently employed in Korea were adopted. By incorporating the table of equivalent pipe diameters, it was found that the size of the inlet pipe diameter was overestimated, which can cause shortage of water pressure and malfunctioning or insufficiency of outflow rate in the corresponding adjacent region. However, by conducting hydraulic analysis based on the table of outflow rates, relatively reasonable flow rates were observed. Furthermore, by comparing the real demand-driven analysis (RDDA) approach and demand-driven analysis (DDA) approach toward managing the huge water demand, it was observed that DDA could not effectively respond to real hourly usage conditions, whereas RDDA (which reflects the hourly effects of inlet pipe diameter and storage tanks) demonstrated results similar to that of real water supply.

The Study on the Diameter Ratio of the Artery-PTFE Anastomosis for the Optimized Deformed Shape (변형후 형상의 최적화를 위한 동맥과 PTFE 문합의 직경비 연구)

  • 이성욱;심재준;한근조
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • In this paper we introduced optimized deformed shape to prevent the blood vessel disease caused by the discord of deformed shape in the end-to-end anastomosis. This study considered the preliminary deformed shape induced by suture in the anastomosis of artery and PTFE, artificial blood vessel, with different diameters. Then we analyzed the final deformed shape of the anastomotic part under the systolic blood pressure. 120mmHg(16.0kPa). The final deformed shape of the anstomotic part was analyzed with respect to the change of initial diameter ratio(R$_{I}$) and the PTFE thickness. Equivalent and circumferential stresses induced by the systolic blood pressure in the anastomosis were also analyzed with respect to the initial diameter ratio(R$_{I}$). The results obtained were as follows : 1. Considering the preliminary deformed shape induced by suture and the systolic pressure in the anastomosis, not intimal hyperplasia, the optimal initial diameter ratio(R$_{I}$) was 1.073. 2. As the initial diameter ratio(R$_{I}$) became larger, higher equivalent and circumferential stresses were induced. And all the maximum stresses occurred on the side of PTFE 0.4mm apart from the anastomosis.

Analysis on the Surface Accuracy in according to Geometry of End Mill (엔드밀의 형상에 따른 가공정밀도 해석)

  • 고성림;이상규;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1001-1004
    • /
    • 2000
  • As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.

  • PDF