• Title/Summary/Keyword: Equipment wear

Search Result 221, Processing Time 0.031 seconds

Effects of Plasma Nitriding on the Surface Characteristics of Tool Steels (공구강의 표면특성에 미치는 플라즈마 질화처리의 영향)

  • 이호종;최한철
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2003
  • Effects of plasma nitriding on the surface characteristics of tool steels have been investigated using wear tester, micro-hardness tester and scanning electron microscope (SEM) Commercial SKD 11 and SM45 alloy were used as specimens and were plasma nitrided using a plasma nitriding equipment for 5 hr and 10hr at $500^{\circ}C$. Microstructure and phase analysis were performed using SEM and XRD. It was found that plasma nitriding for lour at $500^{\circ}C$, compared with plasma nitriding for 10hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear resistance and hardness as nitriding time increased. SKD11 alloy showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with SM45 alloy.

The Study on the Correlation of Vibration, Wear and Temperature for Rubbing in Rotating Machinery (마멸현상에서 발생하는 회전기 시스템의 진동.마모.온도의 상관 관계 연구)

  • 백두진;김승종;윤의성;김창호;공호성;장건희;이용복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.453-459
    • /
    • 2002
  • In this paper. the correlation among vibration. wear and temperature are experimentally investigated when rubbing is caused by static and dynamic forces. Each measurement reflects the characteristics of the system and is useful in detecting and diagnosing the current status of rotating machinery. For experiment, the rotor system with lubricating equipment such as trochoid pump, oil tank and wear detecting sensor is implemented to simulate the rubbing condition. Experimental results show that significant change in wear quantity can be notified when vibration signal is changed by rubbing. The results can be applied to system monitoring and fault diagnosis in rotating machinery.

  • PDF

Regulations on Wearing Personal Protective Equipment by Hazardous Chemical Handlers and Their Implementation (유해화학물질 취급자의 개인보호구 착용에 대한 규정과 그 이행정도)

  • Han, Don-Hee;Park, Min Soo;Cho, Yong-Sung;Lee, Chungsoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.101-109
    • /
    • 2021
  • Objectives: The objectives of this study are to introduce the development process of work situations and types in the revised regulations on wearing personal protective equipment (PPE) for hazardous chemical handlers, analyze the implementation of the regulations, and then provide basic data for future education strategies. Methods: The development process of work situations for regulation was explained through a flowchart by year. In 2018, a survey of 30 chemical managers and 201 managers and handlers was conducted based on recognition of work situations and the related regulations. In 2019, 91 chemical managers and 204 handlers were surveyed to find the degree of compliance with regulations, direction for improvement of understanding the regulations, and training methods. Results: Only 78.0% of chemical managers and 66.7% of handlers said they were aware of the regulations (p<0.05). Just 79.0% of handlers knowing the regulations said they would wear PPE in compliance with these regulations. Therefore, the best way to make workers wear proper PPE in accordance with regulations is to strengthen the promotion of education on regulations. In order to improve the quality of education, 51.7% of managers and 33.3% of handlers cited educational content (video, ppt, etc.) as the top priority. Conclusion: This study suggested that more educational opportunities should be provided and educational content should be developed in order for workers handling hazardous chemicals to wear PPE as prescribed in regulations.

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.

Evaluation of Fretting Wear Damage of Electronic Connectors for the Automotive (자동차용 전장 커넥트 프레팅 마모 손상 평가)

  • Jang, SeungGyu;Kim, Deokhyeon;Kim, Jinsang;Choi, SungJong;Cho, HyunDeog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.33-41
    • /
    • 2014
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. When two pieces of materials, pressed together by an external static load, are subjected to a transverse cyclic loading or various vibrations, so that one contacting face is relatively displaced cyclically parallel to the other face, wear of the mating surfaces occurs. These fretting damages may be observed in electrical connectors for automotive components, where there are special environments and various vibration conditions. This study aims to evaluate the usefulness of fretting test equipment that was developed for reliability test of electrical connector. Fretting tests were carried out using tin coated connectors and friction force, contact resistance, contact area and roughness of contact region were investigated. The following results that will be helpful to understand the fretting wear mechanism, increase process the contact resistance and contact area were obtained. (1) In the same frequency and slip amplitude, the friction force, roughness and contact area increased rapidly until about $10^3$ cycles, after which it was slightly changed. (2) In the various frequency and slip amplitude, the contact area increased with slip amplitude and cyclic numbers, but it did not depend on cyclic frequency. (3) The surface roughness of contact region did not depend on the cyclic frequency. From these results, the applicability of the fretting wear test equipment and reliability of connector were discussed.

Knowledge, attitude, and wearing of personal protective equipment among dental hygienists in regions during the COVID-19 era (위드 코로나 시대 일부지역 치과위생사의 개인보호장구에 대한 지식, 태도 및 착용)

  • Mi-Jung Park;Jung-Hwa Lee;Kyung-Ae Jang;Hyun-Seo Yoon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2024
  • Objectives: This study aimed to understand the knowledge, attitude, and wearing of four types of personal protective equipment among dental hygienists based on to the COVID-19 infection control guidelines and to provide basic data on the need to wear these equipment by dental hygienists in dental medical institutions. Methods: Between March 31 and April 26, 2022, 285 dental hygienists working at dental institutions in Busan and Gyeongsang Provinces participated in the study. Results: The higher the knowledge on personal protective equipment, the higher the glove-wearing rate; and the higher the attitude toward personal protective equipment, the higher the KF94 mask-wearing rate. Furthermore, the higher the rate of wearing face shields, the higher the rate of wearing gloves and full-body protective suits; and the higher the rate of wearing gloves, the higher the rate of wearing a full-body protective suit. Conclusions: To prevent cross-infection by dental hygienists in dental medical institutions, it is necessary to have the four types of personal protective equipment at all times and to strengthen comprehensive education on these equipment

Comparison of abrasive wear characteristics according to particle size of newly developed dental alumina ceramic dressers (새롭게 개발된 치과용 알루미나 세라믹 드레서의 입자 크기에 따른 연삭 마모 특성의 비교)

  • Soo-Chul Park;Jong-Kyoung Park
    • Journal of Technologic Dentistry
    • /
    • v.46 no.3
    • /
    • pp.107-113
    • /
    • 2024
  • Purpose: This study aimed to develop dental alumina ceramic dressers, evaluate their abrasive wear characteristics based on particle size, and identify dental dressers with optimal particle size and performance. Methods: Commercial ceramic dressers (n=5) were selected as the control group, whereas alumina ceramic dressers with 80-grit and 120-grit particles were fabricated as the experimental groups (n=5 each). Prepared specimens were assessed for surface roughness, wear resistance, and abrasiveness against a wear-inducing element (SUS304 stainless steel ball). Means and standard deviations were calculated for each test. Statistical analysis was performed using the Kruskal-Wallis H test with Bonferroni correction (α=0.05) via SPSS Statistics ver. 23.0 (IBM). Results: Surface roughness was highest in the 80-grit group (22.734±1.308 ㎛), followed by 120-grit group (21.804±0.785 ㎛), and lowest in control group (15.782±0.223 ㎛). Wear resistance was greatest in 120-grit group (0.007±0.002 g), followed by the 80-grit group (0.007±0.004 g), and lowest in the control group (0.370±0.010 g). Furthermore, abrasiveness against the wear-inducing element (SUS304 stainless steel ball) was highest in 120-grit group (0.017±0.003 g), followed by the 80-grit group (0.015±0.003 g), and lowest in control group (0.010±0.001 g). Conclusion: Based on the combined results of surface roughness, wear resistance, and abrasiveness against a wear-inducing element, the newly developed alumina ceramic dressers show promise for clinical application.

Measurement and assessment of sports wear fabric clinginess

  • Kim, Jooyong;Koo, Ji-Eun;Koo, Hyun-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.113-113
    • /
    • 2003
  • Four main factors, cling force, wicking force, water retention and water transport, affecting the clinginess of the sportswear fabric have been identified and measured by combining a new equipment and a statistical analysis. A classification model based on those factors has been developed in order to evaluate and standardize fabric wear comforts during heavy physical acting. Ten sportswear fabrics assumed different in their wear characteristics have been employed to investigate the relationship between the measurements and actual performance. It has been shown that the subjective evaluation ratings were well agreed with the measurement.

  • PDF

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.