• 제목/요약/키워드: Equipment failure analysis

검색결과 346건 처리시간 0.027초

진동 분석을 이용한 사출성형기 유압펌프 결함 진단 시스템에 관한 연구 (A Study on Failure Diagnosis System for a Hydraulic Pump in Injection Molding Machinery Using Vibration Analysis)

  • 김태현;전용호;이문구
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.343-348
    • /
    • 2013
  • In line with the advances in factory automation, various pieces of equipment are now operated in batch processes controlled by computers. However, many kinds of faults can occur in complicated and large systems, which can result in low productivity and economic loss. The reliability and safety of systems have been studied because of the difficulty of determining the severity and location of faults. Therefore, it is necessary to detect and diagnose such faults in order to guarantee the reliability and safety of the equipment. In this paper, a diagnosis method for the ball bearings of a hydraulic pump is applied using a vibration signal for the maintenance of injection molding equipment. The bearings' defects are selected as a main failure mode through a failure mode and effect analysis (FMEA). Usually, there are nonlinear and impulse components of vibration in a ball bearing with faults. For the effective fault diagnosis of a ball bearing, nonlinear diagnostic methods and time-frequency analysis are applied, in addition to the methods currently used, such as power spectrum, time series analysis, and statistical methods. As a result of this study, a failure diagnosis system is provided that is useful even for non-experts. This is a condition-based method that makes it possible to resolve problems in a timely and economical way, in contrast to the prior method, which required regular but wasteful maintenance based on the experience of expensive external experts.

A classification of electrical component failures and their human error types in South Korean NPPs during last 10 years

  • Cho, Won Chul;Ahn, Tae Ho
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.709-718
    • /
    • 2019
  • The international nuclear industry has undergone a lot of changes since the Fukushima, Chernobyl and TMI nuclear power plant accidents. However, there are still large and small component deficiencies at nuclear power plants in the world. There are many causes of electrical equipment defects. There are also factors that cause component failures due to human errors. This paper analyzed the root causes of failure and types of human error in 300 cases of electrical component failures. We analyzed the operating experience of electrical components by methods of root causes in K-HPES (Korean-version of Human Performance Enhancement System) and by methods of human error types in HuRAM+ (Human error-Related event root cause Analysis Method Plus). As a result of analysis, the most electrical component failures appeared as circuit breakers and emergency generators. The major causes of failure showed deterioration and contact failure of electrical components by human error of operations management. The causes of direct failure were due to aged components. Types of human error affecting the causes of electrical equipment failure are as follows. The human error type group I showed that errors of commission (EOC) were 97%, the human error type group II showed that slip/lapse errors were 74%, and the human error type group III showed that latent errors were 95%. This paper is meaningful in that we have approached the causes of electrical equipment failures from a comprehensive human error perspective and found a countermeasure against the root cause. This study will help human performance enhancement in nuclear power plants. However, this paper has done a lot of research on improving human performance in the maintenance field rather than in the design and construction stages. In the future, continuous research on types of human error and prevention measures in the design and construction sector will be required.

Transfer Crane의 고장 및 정비 작업 표준화 (Standardization of maintenance and failure of Transfer Crane)

  • 윤원영;이유환;하영주;김귀래;손범신
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 춘계학술대회 및 창립 30주년 심포지엄(논문집)
    • /
    • pp.363-366
    • /
    • 2006
  • 항만에 있어서 하역장비는 매우 중요하다. 컨테이너 크레인이나 트랜스퍼 크레인 같은 장비가 고장이 나면 수리나 재주문에 걸리는 시간동안 작업이 이루어지지 못하므로 엄청난 비용손실을 초래한다. 그러나 가격이 고가이므로 예비품을 많이 보유할 수도 없는 형편이다. 대체적으로 부피가 크고 고가인 항만 장비의 특성상 효율적인 예방정비와 고장 분석을 통해 장비의 신뢰성을 확보하는 것이 무엇보다 필요하다. 본 연구는 항만 장비 중 주요 장비인 트랜스퍼 크레인을 선정하여 시스템 및 기능, 고장 메카니즘을 분석하였으며, 고장/정비 이력 데이터의 수집 및 정리를 통하여 고장과 정비 작업의 내용을 표준화하였다. 장비의 운영 및 정비 작업을 전산화하기 위한 기초 작업인 본 연구는 다음 세대 장비의 최적 설계와 장비의 최적 운영 정책을 설계하는 새로운 시도가 될 것이다.

  • PDF

선박 기관시스템 보조기기의 상태기반 고장진단/예측을 위한 고장 모사 데이터베이스 구축 (A Study on the Development of a Failure Simulation Database for Condition Based Maintenance of Marine Engine System Auxiliary Equipment)

  • 김정영;이태현;이송호;이종직;신동민;이원균;김용진
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.200-206
    • /
    • 2022
  • This study is to develop database by an experimental method for the development of condition based maintenance for auxiliary equipment in marine engine systems. Existing ships have been performing regular maintenance, so the actual measurement data development is very incomplete. Therefore, it is best to develop a database on land tests. In this paper, a database developed by an experimental method is presented. First, failure case analysis and reliability analysis were performed to select a failure mode. For the failure simulation test, a test bed for land testing was developed. The failure simulation test was performed based on the failure simulation scenario in which the failure simulation test plan was defined. A 1.5TB failure simulation database has been developed, and it is expected to serve as a basis for ship failure diagnosis and prediction algorithm model development.

철도급전시스템의 신뢰도기반 점검주기 산정 (The Evaluation of Inspection Period based on Reliability in Railway Traction Power Systems)

  • 김형철
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1177-1183
    • /
    • 2013
  • In this paper, the analysis of inspection period bases on reliability is suggested in the field of traction power system. Even though there are several maintenance models, the most commonly used maintenance assessment has been focused on time based maintenance in real traction power systems. The maintenance intervals are selected on the basis of long-time experience. It ensures high availability and exact planning of staff. Reliability centered maintenance, which evaluates criticality and severity of each failure mode, achieves the operation, maintenance, and cost-effective improvement that will manage the risks of equipment. This paper deals with electrification in railway inspection frequency and applied reliability based inspection frequency instead of constant intervals. The distribution function of failure rate in traction power system belongs to Weibull function. Also, the fault data and the number of installed equipments for electrifications are collected. The failure history is investigated and classified in detail. Though these complicated procedures, it contribute to extend equipment lifetime and to reduce maintenance costs.

Repair policies of failure detection equipments and system availability

  • Na, Seongryong;Bang, Sung-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.151-160
    • /
    • 2022
  • The total system is composed of the main system (MS) and the failure detection equipment (FDE) which detects failures of MS. The analysis of system reliability is performed when the failure of FDE is possible. Several repair policies are considered to determine the order of repair of failed systems, which are sequential repair (SQ), priority repair (PR), independent repair (ID), and simultaneous repair (SM). The states of MS-FDE systems are represented by Markov models according to repair policies and the main purpose of this paper is to derive the system availabilities of the Markov models. Analytical solutions of the stationary equations are derived for the Markov models and the system availabilities are immediately determined using the stationary solutions. A simple illustrative example is discussed for the comparison of availability values of the repair policies considered in this paper.

Time uncertainty analysis method for level 2 human reliability analysis of severe accident management strategies

  • Suh, Young A;Kim, Jaewhan;Park, Soo Yong
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.484-497
    • /
    • 2021
  • This paper proposes an extended time uncertainty analysis approach in Level 2 human reliability analysis (HRA) considering severe accident management (SAM) strategies. The method is a time-based model that classifies two time distribution functions-time required and time available-to calculate human failure probabilities from delayed action when implementing SAM strategies. The time required function can be obtained by the combination of four time factors: 1) time for diagnosis and decision by the technical support center (TSC) for a given strategy, 2) time for strategy implementation mainly by the local emergency response organization (ERO), 3) time to verify the effectiveness of the strategy and 4) time for portable equipment transport and installation. This function can vary depending on the given scenario and includes a summation of lognormal distributions and a choice regarding shifting the distribution. The time available function can be obtained via thermal-hydraulic code simulation (MAAP 5.03). The proposed approach was applied to assess SAM strategies that use portable equipment and safety depressurization system valves in a total loss of component cooling water event that could cause reactor vessel failure. The results from the proposed method are more realistic (i.e., not conservative) than other existing methods in evaluating SAM strategies involving the use of portable equipment.

Two Factors Failure Model of Oil-Paper Insulation Aging under Electrical and Thermal Multistress

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.957-963
    • /
    • 2014
  • Converter transformers play important roles in high-voltage direct current transmission systems. This paper presents experimental and analysis results of the combined electrical and thermal aging of oil-impregnated paper at pulsating DC voltages. Breakdown voltages and time-to-breakdown of oil-paper specimens were measured by using short-time and constant-stress tests. The breakdown characteristics of combined electrical and thermal aging on insulation system were discussed. According to the relationship between failure time and aging temperature, the two-parameter Weibull model was improved. On the basis of the competing risk algorithm and the improved Weibull model, the two factors failure model was calculated. And the influence of temperature in the insulation system has been analyzed. This model performs better than the two-parameter Weibull model when both time and temperature are considered as variables in estimating the lifetime of oil-paper insulation.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

집단보호장비 내의 회로카드조립체 고장 원인 분석 및 품질 향상 (Analysis of Causes PCB Failure for Collective Protection Equipment and Improvement of Quality)

  • 박세진;기상식
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.87-92
    • /
    • 2019
  • 본 논문은 집단보호장비에 들어가는 회로카드조립체의 고장 원인 분석 및 품질 개선에 관한 연구이다. 해당 장비는 현재 운용중인 무기체계의 구성품으로 냉난방 기능뿐만 아니라, 화생 방어 역할을 한다. 그런데 군에서 운용중에 응축부조립체의 팬이 동작하지 않는 현상이 다수 발생되었다. 이에 따라 고장 원인을 분석하였고 특정 회로카드조립체가 소손됨을 확인하였다. 고온의 환경조건에서 지속적인 냉방가동에 따라 부품이 가열되고 이에 따라 고온에 노출된 전자부품이 열화되어 소손됨을 알 수 있었다. 따라서 본 논문은 이를 해결하기 위해 방열판을 적용하여 과온 동작에 의한 고장빈도를 낮추고 회로카드조립체의 수명을 연장한 품질 개선에 관한 연구이다. 개선된 회로카드조립체는 실험을 통해 방열성능을 확인하였다. 뿐만 아니라 체계 호환성 검사, 양압유지, 소음 시험, 작동시험 등을 통해 성능검사를 마쳤으며 현재 개선된 제품을 적용중이다. 이번 개선을 통해 현재까지 해당 회로카드조립체에서 발생한 고장은 없으며 해당 장비의 품질이 향상됨을 확인하였다.