• Title/Summary/Keyword: Equipment failure analysis

Search Result 346, Processing Time 0.023 seconds

A STUDY OF WORKING EFFICIENCY AND FILE DEFORMATION OF GT ROTARY FILE IN CURVED CANALS (GT rotary file을 이용한 만곡 근관형성시 작업 효율 및 file 변형 발생에 관한 연구)

  • 신주희;백승호;배광식;임성삼;윤수한;김병현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.418-435
    • /
    • 2001
  • Root canal preparation process is of utmost importance in successful treatment of root canal. Also, one of the most important purpose of the root canal preparation is to enlarge the root canal three dimensionally without changing the curvature of the root canal However as the curvature of the root canal increases, there are many difficulties involved in formation of optimum root canal. Therefore in order to solve the above mentioned problems, new developments in methods of root canal preparation and equipments for such purposes were made. Recently, vigorous studies about newly introduced engine-driven nickel-ti-tanium rotary file are conducted. As shown in research results to dates, it is well established that the use of nickel-titanium file is better suited for curved root canal than stainless steel file in maintaining the curvature or root canal and reducing the deformation of root canal. However it is also acknowledged that there are a few discrepancies in research results according to protocol, due to failure to remove variables in experiments. In addition, although it is recommended by the manufacturer that the GT rotary file should maintain a low rotational speed of 150~350rpm and 'light pressure' as light as not to break the lead of a pencil, academic studies about the vertical force which is not yet standardized are not sufficiently explored. Therefore, this research devised and utilized a special research equipment to standardize the appropriate range of vertical force for GT rotary file through experiments by breaking of the lead of a pencil as expressed by the manufacturer and to accurately measure factors involved through repeating and recreating the environment of root canal preparation. Forming nine experimental groups by varying the vertical forces (150g. 220g, 300g) and rpm (150rpm, 250rpm, 350rpm), the effects of changing vertical forces and rpm on working efficiency were measured in terms of time expended in root canal preparation by crown-down method using a transparent resin block with 35 degree curvature and GT rotary file (z-test). The following research using this special research equipment that involved nine experimental groups and varying the vertical force for root canal preparation from 300g which is within the normal vertical force range to 700g and 1000g which fall outside the normal rpm range. The results were as follows : 1. Analysis of the experiment results revealed that the time spent in root canal preparation decreased as the vertical forces and rpm increased (p<0.05). Also, the effects of rpm were greater than those of the vertical forces within the normal vertical force range ($\beta$-weight test). 2. Observation of the deformation of GT rotary file revealed that deformation increases in a direct correlation with the vertical force increase and in a reverse correlation with the rpm decrease. In the case of the vertical forces close to the normal range, the probability of GT rotary file deformation were quite different depending on the rpm changes. In the case of greater vertical forces, the occurrences of deformation of the file were more frequent regardless of the rpm changes. 3. Deformation and breakage of file were also commonly observed in the expended time measurement experiments and GT rotary file deformation experiments in which low speed rpm (150rpm) was used and at the curved portion of the resin block.

  • PDF

A Study on the Economic Feasibility Analysis of Cosmetics Beauty Industrialization Center

  • Kim, Ji-In;Park, Jeong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2020
  • As the cosmetics beauty industry grows into a key next-generation industry, the establishment of an industrialization center is needed, but failure to verify the adequacy and feasibility of the investment could lead to financial burdens. In this study, the project costs and facilities of an industrial center are reviewed to analyze its economic feasibility based on the cost estimates, revenue estimates, estimated profit or loss calculations, and estimated operating cash flows. The profit estimation criteria were analyzed by applying 90 per cent of expected orders for research projects (24 billion won) and 12 per cent of rental rates for testing equipment (4.5 billion won for construction), and the benefit/cost ratio is higher than 1.02 per cent and the net present value is higher than '0' won, and the internal rate of return is also more than 5.06 per cent for all three analytical methods. Therefore, in order for the construction of a cosmetics beauty industrialization center to be economically feasible, it is necessary to maintain research project orders of more than 90 percent and return on equipment rent of more than 12 percent, and a strategic approach is needed to diversify business profits.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.

Accelerated Life Analysis and Endurance Verification of Electro-Mechanical Actuator (항공기용 전기식 날개 구동장치의 가속 수명 분석 및 시험을 통한 내구성 검증)

  • Huh, Seok Haeng;Lee, Byung Ho;Seol, Jin Woon;Baek, Joo Hyun;Yang, Myung Seok;Kwon, Jun Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.829-835
    • /
    • 2016
  • Electro-Mechanical Actuator installed on the aircraft plays a key role in an aircraft's flight control through flight control computer. Reliable prediction of the actuator is important for the aircraft. To estimate the lifetime of a product, it is necessary to test full target life. However, it is very difficult to perform it due to the long life time of actuator but short period of development time with increasing cost. Therefore, accelerated life test has been used to reduce the test time for various reasons such as reducing product's development cycle and cost. In this paper, to predict the lifetime of the actuator, we analyzed the flight profile of aircraft and adapted the method of accelerated life test in order to accelerate failure modes that might occur under user conditions. We also set up an endurance test equipment for validating the demanded lifetime of an actuator and performed accelerated life test.

Finite Element Analysis on the Sealing Behavior and Endurance Safety of O-rings with a V-groove (V홈을 갖는 오링의 밀봉거동과 내구 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • This study presents sealing behavior and endurance safety of V-grooved o-rings as functions of a strain, compression stress, and contact normal stress using a FEM technique. The FEM results on the sealing behavior and endurance safety show that the maximum strain, maximum compression stress, and maximum contact normal stress of V-grooved o-rings are approximately 1.2 times higher than those of conventional solid o-rings. This is why that an o-ring has a V-groove in the center between two overlapped circles, which is very effective in sealing for ball valves, pressure vessels, and gas equipment. And the extrusion failure in V-grooved o-rings does not take place under an increased gas pressure due to a V-groove. This may extend sealing life compared with that of a conventional solid o-ring.

Evaluation of the repeatability and matching accuracy between two identical intraoral spectrophotometers: an in vivo and in vitro study

  • Kim, Hee-Kyung
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.252-258
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the repeatability and matching accuracy between two identical intraoral spectrophotometers. MATERIALS AND METHODS. The maxillary right central incisor, canine, and mandibular left central incisor of each of 30 patients were measured using 2 identical intraoral spectrophotometers with different serial numbers (EasyShade V). The color of each shade tab from 3 shade guides (VITA 3D-Master) was also determined with both devices. All measurements were performed by a single operator. Statistical analyses were performed to verify the repeatability, accuracy, and the differences between the devices with paired t-tests, one-way ANOVA, and intra-class correlation coefficients (ICCs) (${\alpha}=.05$). RESULTS. A high level of measurement repeatability (ICC>0.90) among $L^*$, $a^*$, and $b^*$ color components was observed within and between devices (P<.001). Intra-device matching agreement rates were 80.00% and 81.11%, respectively, while inter-device matching agreement rate was 51.85%. ANOVA revealed no significant different color values within each device, while paired t-test provided significant different color values between both devices. The CIEDE2000 color differences between both devices were $2.28{\pm}1.61$ ${\Delta}E_{00}$ for in-vivo readings. Regarding the clinical matching accuracy of both devices, ${\Delta}E_{00}$ values between teeth and matching shade tabs were $3.05{\pm}1.19$ and $2.86{\pm}1.02$, respectively. CONCLUSION. Although two EasyShade V devices with different serial numbers show high repeatability of CIE $L^*$, $a^*$, and $b^*$ measurements, they could provide different color values and shade for the same tooth.

Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise (스쿼트 동작 시 웨이트 벨트 착용 전·후에 따른 운동역학적 분석)

  • LEE, Jeong-Ki;HEO, Bo-Seob;KIM, Yong-Jae;LEE, Hyo-Taek
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.893-902
    • /
    • 2016
  • The purpose of this study is to investigate the effect of wearing a weightlifting belt, which is an auxiliary equipment used during squat, by measuring and analyzing biomechanical difference in lower limb and proposing safer and to suggest a more effective exercise method for general population. Selected 8 male participants in their 20s who have not performed regular resistance exercise for at least a year, but have experience of performing squat. The comprehensive method of study is as follows: subjects were notified of the purpose of the study and were told to practice warm-up and the squat motion for the experiment for 20 minutes. When the participant believed they were ready to begin, the experiment was started. At controlled points, foot pressure distribution sensor has been installed. Then left and right feet have been placed on the pressure distribution sensor, from which data for successful squat position that does not satisfy the criteria for failure have been collected and computed with Kwon3D XP program and TPScan program. For data processing of this study, SPSS 21.0 was used to calculated mean (M) and standard deviation (SD) of the analyzed values, and paired t-test has been conducted to investigate the difference before and after wearing the weightlifting belt, with p-value of ${\alpha}<.05$. As for time consumed depending on usage of weightlifting belt in squat, statistically significant difference has been found in P2, which is recovery movement. Lower limb angle depending on usage of weightlifting belt in squat has shown statistically significant difference in E1 foot joint(p<. 001). There has been statistically significant difference in E2 knee joint. Foot pressure percentage depending on usage of weightlifting belt in squat were found to be statistically significant (p<. 01) in both regions of anterior and posterior foot.

A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability (타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구)

  • Park, Se-Jun;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

A Study on the Design Verification by Using Finite Elements Method and Quality Improvement of Radar by Managing Change Points of 4M (유한요소 기법을 활용한 설계검증 및 4M 변경점 관리를 통한 레이더장비 품질 신뢰성 확보에 관한 연구)

  • Jo, Hee Jin;Pak, Se Jin;Lee, Nam Ho;Jung, Won Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.437-451
    • /
    • 2019
  • Purpose: The purpose of this study is to improve the quality of the PGM system by improving the structure and production process of slip-ring rotary joint for radar. Methods: The improvement measures for each cause are established through failure analysis of broken items. Specifically, changing in the housing to improve the heating system. Changing the transportation method to prevent damage to equipment during transport. Changing work process of the attenuator ring to prevent damage. etc. Results: The results of this study are as follows; improving the heating system reduces heat generated by the attenuator by about 7 degrees and obtain additional temperature margins. Reduction of defect rate because of adding X-band rotary joint run-out measurement test, ESS of slip-ring rotary joint and Transportation improvement(reinforced flight boxes, tube protection, etc). Getting stable VSWR values by improving work process of attenuator overheating due to a bad bonding process. Conclusion: Through this study, improvements were made to slip-ring rotary joint that failed repeatedly for various reasons. As a result of the application of the improvements, the same fault does not occur until now, so we can see that the quality of PGM has improved.

A modified shear strength reduction finite element method for soil slope under wetting-drying cycles

  • Tu, Yiliang;Zhong, Zuliang;Luo, Weikun;Liu, Xinrong;Wang, Sui
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.739-756
    • /
    • 2016
  • The shear strength reduction finite element method (SSRFEM) is a powerful tool for slope stability analysis. The factor of safety (FOS) of the slope can be easily calculated only through reducing effective cohesion (c′) and tangent of effective friction angle ($tan{\varphi}^{\prime}$) in equal proportion. However, this method may not be applicable to soil slope under wetting-drying cycles (WDCs), because the influence of WDCs on c′ and $tan{\varphi}^{\prime}$ may be different. To research the method of estimating FOS of soil slopes under WDCs, this paper presents an experimental study firstly to investigate the effects of WDCs on the parameters of shear strength and stiffness. Twelve silty clay samples were subjected to different number of WDCs and then tested with triaxial test equipment. The test results show that WDCs have a degradation effect on shear strength (${\sigma}_1-{\sigma}_3)_f$, secant modulus of elasticity ($E_s$) and c′ while little influence on ${\varphi}^{\prime}$. Hence, conventional SSRFEM which reduces c′ and $tan{\varphi}^{\prime}$ in equal proportion cannot be adopted to compute the FOS of slope under conditions of WDCs. The SSRFEM should be modified. In detail, c′ is merely reduced among shear strength parameters, and elasticity modulus is reduced correspondingly. Besides, a new approach based on sudden substantial changes in the displacement of marked nodes is proposed to identify the slope failure in SSRFEM. Finally, the modified SSRFEM is applied to compute the FOS of a slope example.