• Title/Summary/Keyword: Equilibrium point

Search Result 558, Processing Time 0.025 seconds

A Controller Based on Velocity Estimator for a Wheeled Inverted Pendulum Running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 속도 추정기 기반 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • In this research a controller based on velocity estimator for a Wheeled Inverted Pendulum (WIP) is designed and various numerical simulation studies are carried out. The WIP has stable and unstable equivalent points. To Keep the unstable equilibrium point, a controller should control carefully the wheels persistently. There are angle, angular velocity, displacement, and velocity of the WIP for controller inputs. The velocity is obtained by differentiating the encoder signals from the motor and is subject to the resolution of the encoder. An improved velocity detection method is proposed based on low resolution encoder and velocity estimator. Various numerical simulations are carried out for showing the validation of the velocity estimator in case of the inclined road condition.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

Envisaging Macroeconomics Antecedent Effect on Stock Market Return in India

  • Sivarethinamohan, R;ASAAD, Zeravan Abdulmuhsen;MARANE, Bayar Mohamed Rasheed;Sujatha, S
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.311-324
    • /
    • 2021
  • Investors have increasingly become interested in macroeconomic antecedents in order to better understand the investment environment and estimate the scope of profitable investment in equity markets. This study endeavors to examine the interdependency between the macroeconomic antecedents (international oil price (COP), Domestic gold price (GP), Rupee-dollar exchange rates (ER), Real interest rates (RIR), consumer price indices (CPI)), and the BSE Sensex and Nifty 50 index return. The data is converted into a natural logarithm for keeping it normal as well as for reducing the problem of heteroscedasticity. Monthly time series data from January 1992 to July 2019 is extracted from the Reserve Bank of India database with the application of financial Econometrics. Breusch-Godfrey serial correlation LM test for removal of autocorrelation, Breusch-Pagan-Godfrey test for removal of heteroscedasticity, Cointegration test and VECM test for testing cointegration between macroeconomic factors and market returns,] are employed to fit regression model. The Indian market returns are stable and positive but show intense volatility. When the series is stationary after the first difference, heteroskedasticity and serial correlation are not present. Different forecast accuracy measures point out macroeconomics can forecast future market returns of the Indian stock market. The step-by-step econometric tests show the long-run affiliation among macroeconomic antecedents.

Nominal Wage Rigidity and Employment Volatility (명목임금의 경직성과 고용변동성)

  • Hwang, Sanghyun;Lee, Jin-Young
    • Asia-Pacific Journal of Business
    • /
    • v.10 no.4
    • /
    • pp.137-151
    • /
    • 2019
  • Using Korean Labor and Income Panel Study data, this paper estimates nominal wage rigidity in Korea by industry from 2005 to 2017 and evaluates the level of inefficiency of Korean labor market. And, after estimating employment volatility by industry using the Labor Force Survey at Establishments data for Korea, we combine the nominal wage rigidity and the employment volatility estimates and analyze the effect of nominal wage rigidity on employment volatility in Korea from 2011 to 2017. If the level of wage rigidity is high, it may be hard for the labor market to be in the equilibrium, and therefore, the market may have inefficiency. We find that the inefficiency of the labor market in Korea have increased from 2005 to 2017 and the industry of accommodation and food service activities has the highest level of inefficiency over the period. We also find that one-percent-point increase in wage rigidity increases employment volatility by 2.3-2.9 percent and the positive effect is bigger for workers with part-time and temporary jobs. The result implies that firms may adjust their labor costs by changing the number of casual workers, rather than permanent workers, when the labor market suffers from a high level of wage rigidity.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account

  • Dao Minh Tien;Do Van Thom;Nguyen Thi Hai Van;Abdelouahed Tounsi;Phung Van Minh;Dao Nhu Mai
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • This work is the first to apply nonlocal theory and a variety of deformation plate theories to study the issue of forced vibration and buckling in organic nanoplates, where the effect of the drag parameter inside the structure has been taken into consideration. Whereas previous research on nanostructures has treated the nonlocal parameter as a fixed value, this study accounts for its effect, and finds that its value fluctuates with the thickness of each layer. This is also a new point that no works have mentioned for organic plates. On the foundation of the notion of potential movement, the equilibrium equation is derived, the buckling issue is handled using Navier's solution, and the forced oscillation problem is solved using the finite element approach. Additionally, a set of numerical examples exhibiting the forced vibration and buckling response of organic nanoplates are shown. These findings indicate that the nonlocal parameter and the drag parameter of the structure have a substantial effect on the mechanical responses of organic nanoplates.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.

Productive Welfare and Re-inspection of Asian Values in Korea (한국의 생산적 복지와 아시아 가치의 재조명)

  • Kim, Yil-Jung
    • 한국사회복지학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.847-865
    • /
    • 2000
  • In a broad range of socio-economic and political systems, we could be able to say that the common and highest goal of all nations is the well-being of the people. From this point of view, it can be seen that two significant historic developments were achieved in the 20th century. One was the maximization of productivity through the socially efficient distribution of resources and the other was the concept of national welfare, which assumes social responsibility for the basic livelihood of human beings. In this point, it is need not only to strengthen economic wealth, but also to redistribute resources equitably. Efficiency and equity, economic and growth, and national welfare emphasize the above-mentioned principle, but they are deeply interdependent in that the well-being of the people cannot be guaranteed in the presence of only one of those. This study aims to find out the equilibrium point those problems in the productive welfare policy in Korea. Finally, it is necessary to develop productive welfare systems in order to solve the issues well.

  • PDF

The Motion Response of an Oil Boom with Flexible Skirt (유연한 스커트를 가진 오일붐의 운동응답해석)

  • 성홍근;조일형;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.156-162
    • /
    • 1995
  • A numerical method for a 2-D oil boom model considering the flexibility of skirt has been developed The neater is assumed rigid and the skirt is tensioned membrane having a point mass at its end The fluid motion is potential. The kinematic condition which demands the continuity of the displacement is imposed at the joint between the floater and the skirt. The dynamic condition for the point mass is imposed at the bottom end of the skirt. The numerical method is based on the Green's function method in the frame of linear potential theory. It finds it's solution simultaneously from the total system of three equations, integral equation, the equation of motion of the floater and the equilibrium equation of the deformation of the skirt. Integral equation is derived by applying the Green's theorem to radiation potential and Green's function. Proper descretization of those three equations leads to the system of a linear algebraic equation. Due to the flexibility of skirt the motion of floater can be diminished in some range of wave frequency and furthermore the mechanism of resonance of the oil boom can be changed. The motion responses of various oil booms have been compared varying the length of the skirt and the point mass. The numerical method has been validated indirectly from the good correspondence between the motion responses of the flexible skirt model and the rigid skirt model in low frequency limit.

  • PDF