• 제목/요약/키워드: Equilibrium molecular dynamics simulation

검색결과 35건 처리시간 0.019초

분자 동역학 모사를 이용한 액상과 기상 계면에서의 확산계수의 예측 (Estimation of diffusion coefficient at the interface between liquid and vapor phases using the equilibrium molecular dynamics simulation)

  • 김경윤;최영기;권오명;박승호;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1584-1589
    • /
    • 2003
  • This work applies the equilibrium molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and calculates diffusion coefficients by Green-Kubo equation derived from Einstein relationship. As a preliminary test, the diffusion coefficients of the pure argon fluid are calculated by equilibrium molecular dynamics simulation. It is found that the diffusion coefficients increase with decreasing the density and increasing the temperature. When both argon liquid and vapor phases are present, the effects of the system temperature on the diffusion coefficient are investigated. It can be seen that the diffusion coefficient significantly increases with the temperature of the system.

  • PDF

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.737-741
    • /
    • 2004
  • We presents new results for transport properties of dumbbell fluids by equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to higher diffusion and to lower friction. The calculated viscosity, however, is almost independent on the molecular elongation within statistical error bar, which is contradicted to the Stokes' law. The calculated thermal conductivity increases and then decreases as molecular elongation increases. These results of viscosity and thermal conductivity for dumbbell molecules by EMD simulations are inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations. The possible limitation of the Green-Kubo and Einstein formulas with regard to the calculations of viscosity and thermal conductivity for molecular fluids such as the missing rotational degree of freedom is pointed out.

Equilibrium and Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Argon

  • Chang Bae Moon;Gyeong Keun Moon;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.309-315
    • /
    • 1991
  • The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-correlation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients for simple liquids are valid.

Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2931-2936
    • /
    • 2013
  • This paper presents results for the calculation of transport properties of noble gases (He, Ne, Ar, Kr, and Xe) at 273.15 K and 1.00 atm using equilibrium molecular dynamics (EMD) simulations through a Lennard-Jones (LJ) intermolecular potential. We have utilized the revised Green-Kubo formulas for the stress (SAC) and the heat-flux auto-correlation (HFAC) functions to estimate the viscosities (${\eta}$) and thermal conductivities (${\lambda}$) of noble gases. The original Green-Kubo formula was employed for diffusion coefficients (D). The results for transport properties (D, ${\eta}$, and ${\lambda}$) of noble gases at 273.15 and 1.00 atm obtained from our EMD simulations are in a good agreement with the rigorous results of the kinetic theory and the experimental data. The radial distribution functions, mean square displacements, and velocity auto-correlation functions of noble gases are remarkably different from those of liquid argon at 94.4 K and 1.374 $g/cm^3$.

분자동역학법에 있어 인접분자 리스트의 영향 (Effect by the application of the Verlet Neighboring list in a Molecular Dynamics Simulation)

  • 최현규;김혜민;최순열;김경근;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.60-67
    • /
    • 2005
  • Generally. in the molecular dynamics simulations. the Verlet neighboring list algorithm is used for the reduction of a simulation time On the other hand. the application of the Verlet neighboring list forces the time evolution of a simulation system to follow an unrealistic path in a phase space. In equilibrium state, it does not matter with the simulation results because the individual molecule's motion is originally random and any effect due to a small deviation from a real time evolution can be completely ignored. However, if an unsteady state is involved. such a deviation may significantly affect to the results. That is, there is a Possibility that the simulation results Provide ones with any misleading data In this study we evaluated the effect due to the Verlet neighboring list in performing the simulation of a non-equilibrium state and suggested the method to avoid it.

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.107-111
    • /
    • 2002
  • The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.