• Title/Summary/Keyword: Equilibrium function

Search Result 703, Processing Time 0.025 seconds

Buffer Intensity of Ammonia and MPA in Water-Steam Cycle of PWRs (가압경수로 원전 물-증기 순환영역에서 암모니아와 MPA의 완충세기)

  • Rhee, In-H.;Ahn, Hyun-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2708-2712
    • /
    • 2010
  • Amines, ammonia or 3-methoxypropylamine (MPA), are used to maintain the optimized pH for the prevention of corrosion in the secondary side of Pressurized Water Reactors (PWRs). They are differently dissociated as a function of temperature which is not same in each location of the water-steam cycle. pH at the operation temperature depends on temperature of fluid and equilibrium constants of water and amines. Thus, every amine provides the different pH in the entire secondary side so that pH is not only the sufficient parameter in corrosion control. The secondary parameter, i.e., buffer intensity, is the ability to maintain a stable pH when $H^+$ are added or removed due to the ingress of impurities or the reaction of corrosion. The buffer intensity is necessary to provide the selection criteria for the best pH control agent for secondary side and the basic understanding of the reason why the flow-accelerated corrosion(FAC) rate may demonstrate the bell-shape curve over temperature. The buffer intensities of ammonia and MPA were reviewed over the entire operation temperature of PWRs. The sufficient buffer intensity is provided for the inhibition of corrosion by ammonia in low temperature $(25{\sim}100^{\circ}C)$ and by DMA in high temperature $(150{\sim}250^{\circ}C)$. In terms of buffer intensity, i) the best pH control agent is an amine with $pK_a(T)$ range of pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$ + 0.5 and ii) the amine solution should have sufficient buffer intensity, ${\beta}$ to inhibit corrosion, and iii) FAC rate may be maximum at the temperature, where ${\beta}_B/{\beta}$ ratio is lowest.

Breakthrough Curves and Elution Patterns of Heavy Metals in Sandy Clay Loam and Clay Soils (사질식양토와 식토토양에서의 중금속의 용탈과 파쇄곡선)

  • Chung, Doug-Young;Noh, Hyun-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • We investigated the mobilization of Cd, Pb, and Cr in two different soils in response to sorption capacities and competition for available sorption site while they moved under saturated water conditions. Two soil samples that were clay and sandy clay loam were collected within 20 cm from the upland surface. To do this, we used three different systems of heavy metal combinations such as single, binary, and ternary as solution phase. And then we observed the breakthrough curve (BTC) and elution as a function of pore volume by applying heavy metal solution and displacing K solution until these curves reached to maximum and minimum. The results showed that BTC and elution curves were not symmetric and it required more pore volumes with increasing species of heavy metals in solution phase, as well as longer tailings. Compared the areas over and under BTC and elution curve, relatively small amount of heavy metal was displaced by K even though there were differences in electronegativity among heavy metals. Conclusively, we assumed that heavy metals transport in soil could be influenced by soil physical nonequilibrium and chemical equilibrium in solution as far as there were more than two species of heavy metals existed.

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).

Association analysis of polymorphisms of G protein-coupled receptor 54 gene exons with reproductive traits in Jiaxing Black sows

  • Wu, Fen;Zhang, Wei;Song, Qian-Qian;Li, Hai-Hong;Xu, Ming-Shu;Liu, Guo-Liang;Zhang, Jin-Zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1104-1111
    • /
    • 2019
  • Objective: The aim of this study was to detect single nucleotide polymorphisms (SNP) of G protein-coupled receptor 54 (GPR54) gene and explore association of this candidate gene with reproductive traits in Jiaxing Black sows. Methods: Six pairs of primers of the gene were designed to amplify all exons thus sequences of which were detected by means of direct sequencing and then SNP loci were scanned. The effects of SNPs on total number of piglets born (TNB), number of piglets born alive (NBA), number of still born piglets (NSB), and litter weight at birth (LWB) of Jiaxing Black sows were analyzed. Results: Three SNP loci, including T3739C, C3878T and T6789C, were identified via comparison of sequencing and two genotypes (AB, BB) at each SNP site were observed. T3739C resulted in the change of amino acid ($Leu{\rightarrow}Pro$) in corresponding protein, and C3878T resulted in synonymous mutation ($Ile{\rightarrow}Ile$). Statistical results demonstrated that allele B was the preponderant allele at the three SNP loci and Genotype BB was the preponderant genotype. Meanwhile, Chi-Square test of these three SNPs indicated that all mutation sites fitted in Hardy-Weinberg equilibrium (p>0.05). For GPR54-T3739C locus, Jiaxing Black sows with genotype BB had 1.23 TNB and 1.28 NBA (p<0.01) that were more than those with genotype AB, respectively. Jiaxing Black sows that had the first two parities with genotype BB had additional 2.23 TNB, 2.27 NBA (p<0.01), and 1.94 LWB (p<0.05) compared to those with genotype AB, respectively. However, for other two loci, no significant difference was found between TNB, NBA, NSB, and LWB, and different genotypes of Jiaxing Black sows. Conclusion: In conclusion, the polymorphisms of GPR54-T3739C locus were significantly associated to TNB, NBA, and LWB and could be used as a potential genetic marker to improve reproductive function of Jiaxing black sows.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks (인공신경망모형과 군집분석을 이용한 교각 세굴심 예측)

  • Lee, Chang-Hwan;Ahn, Jae-Hyun;Lee, Joo Heon;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.111-120
    • /
    • 2009
  • A local scour around a bridge pier is known as one of important factors of bridge collapse. Two approaches are usually used in estimating a scour depth in practice. One is to use empirical formulas, and the other is to use computational methods. But the use of empirical formulas is limited to predict a scour depth under similar conditions to which the formulas were derived. Computational methods are currently too expensive to be applied to practical engineering problems. This study presented the application of artificial neural networks (ANN) to the prediction of a scour depth around a bridge pier at an equilibrium state. This study also investigated various ANN algorithms for estimating a scour depth, such as Backpropagation Network, Radial Basis Function Network, and Generalized Regression Network. Preliminary study showed that ANN models resulted in very wide range of errors in predicting a scour depth. To solve this problem this study incorporated cluster analysis into ANN. The incorporation of cluster analysis provided better estimations of scour depth up to 42% compared with other approaches.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Enact of Ischemic Preconditioning on Myocardial Protection A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 -적출 쥐 심장에서 상온에서의 심근허혈과 중등도 제체온하에서 심근정지액 사용 시의 비교 연구-)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.242-254
    • /
    • 2003
  • Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of 25℃ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups. All hearts were perfused at 37℃ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained. Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37℃, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4℃) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at 25℃, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minutes (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37℃ normothermic ischemia and 30 minutes of reperfusion (n=6). Group 4 served as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, improving the LVSP, LVEDP, RPP, and LVdp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.

Effect of Ischemic Preconditioning on Myocardial Protection - A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 - 적출 쥐 심장에서 상온에서의 심근허혈과 중등도 저체온하에서 심근정지액 사용 시의 비교 연구 -)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.5
    • /
    • pp.242-254
    • /
    • 2003
  • Background: Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of $25^{\circ}C$ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups All hearts were perfused at 37$^{\circ}C$ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained, Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37$^{\circ}C$, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4$^{\circ}C$) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at $25^{\circ}C$, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minuts (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37$^{\circ}C$ normothermic ischemia and 30 minutes of reperfusion (n=6) Group 4 soloed as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, Improving the LVSP, LVEDP, RPP, and LV dp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.