• Title/Summary/Keyword: Equilibrium factor

Search Result 420, Processing Time 0.027 seconds

Screening of the Inhibiory Effects of Herbal Medicines on the Platelet Activating Facthr(PAP) Binding : Randomly Selected Herbal Medicines (생약 물 추출물의 혈소판 활성화 인자결합 억제효과 검색 : 무작위로 선정한 국내 유통 생약)

  • 한병훈;양현옥;이승룡;조순현;고현정;한용남
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • As a continuation of the previous study, a second group of sixty two aqueous extracts(freeze dried) from natural products was screened for the inhibitory effect of platelet activating factor(PAF) binding to rabbit platelet using 0.6 nM [$^{3}$H]PAF as a radioligand. The results demonstrated that three medicinal plants inhibited 40~50% of [$^{3}$H]PAF equilibrium binding at the concentration of 200 $\mu\textrm{g}$/ml.

  • PDF

Analysis on a Power Transaction with Fuel-Constrained Generations in an Electricity Market (연료제약 발전기를 고려한 전력거래 해석기법 연구)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.484-489
    • /
    • 2004
  • When the energy resource available to a particular plant (be it coal, oil, gas, water, or nuclear fuel) is a limiting factor in the operation of the plant, the entire economic dispatch calculation must be done differently. Each economic dispatch calculation must account for what happened before and what will happen in the future. This paper presents a formulation and a solution method for the optimization problem with a fuel constraint in a competitive electricity market. Take-or- Pay (TOP) contract for an energy resource is the typical constraint as a limiting factor. Two approaches are proposed in this paper for modeling the dispatch calculation in a market mechanism. The approaches differ in the subject who considers and inserts the fuel-constraint into its optimization problem. Market operator and each power producer having a TOP contract are assumed as such subjects. The two approaches are compared from the viewpoint of profits. surplus. and social welfare on the basis of Nash Equilibrium.

Purification and Structural Studies on Human Pro-ghrelin

  • Yun, Ji-Hye;Lee, Jee-Won;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.40-50
    • /
    • 2008
  • Ghrelin is a unique peptide hormone that releases growth factor and it stimulates appetite. It comes from pre pro-ghrelin by the post translational modification process and its innate functions are known as food up-take and the growth hormone regulation. Therefore, the structural information of ghrelin precursor is of importance in understanding it function. From our results, we found that the solution structure of ghrelin is mostly random coil conformation at neutral pH value and the structural population changes with pH environments. Data from circular dichroism in different TFE concentrations revealed that the secondary structure changes from random coil to a-helix and the isodichroic point is observed at 202nm, implying that two equilibrium states exist between random coil and helical structure.

A Study on Electricity Market Equilibrium with Transmission Loss and Application of The Loss Factor (손실을 고려한 전력시장 균형점과 손실계수 적용에 대한 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.838-839
    • /
    • 2007
  • 전력산업의 시장구조는 과점형태의 불완전 경쟁의 구조로 해석하는 것이 일반적이다. 또한 전기의 물리적 특성상 송전선로에서는 전력손실이 발생하게 되는데, 본 논문은 과점시장 모델로서 쿠르노(Cournot)모델을 사용하여 손실을 포함한 내쉬 균형점을 해석한다. 지역별 한계가격(Locational Marginal Price ; LMP)와는 달리 계통한계가격(System Marginal Price ; SMP)는 손실에 대한 가격신호를 시장에 반영하기 어렵기 때문에 손실과 함께 한계송전손실계수(Marginal Loss Factor ; MLF)를 적용하여 균형상태의 시장거래가치를 비교분석한다.

  • PDF

Investigations on the Chain Conformation of Weakly Charged Polyelectrolyte in Solvents by Using Efficient Hybrid Molecular Simulations

  • Chun, Myung-Suk;Lee, Hyun-Su
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.297-303
    • /
    • 2002
  • We have investigated the microstructural properties of a weakly charged polyelectrolyte modeled with both Hookean spring and Debye-Huckel potential, by employing a novel hybrid scheme of molecular dynamics (MD) and Monte Carlo (MC) simulations. Although the off-lattice pivot step facilitates the earlier computations stage, it gives rise to oscillations and hinders the stable equilibrium state. In order to overcome this problem, we adopt the MC off-lattice pivot step in early stage only, and then switch the computation to a pure MD step. The result shows that the computational speed-up compared to the previous method is entirely above 10 to 50, without loss of the accuracy. We examined the conformations of polyelectrolyte in solvents in terms of the end-to-end distance, radius of gyration, and structure factor with variations of the screening effects of solvent and the monomer charges. The emphasis can favorably be given on the elongation behavior of a polyelectrolyte chain, with observing the simultaneous snapshots.

Intrinsic and Thermodynamic Effects on the Structure and Energy of the S$_N$2 Transition State$^*$

  • Lee, Ik-Choon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.448-453
    • /
    • 1986
  • Two contributions to the activation barrier of the $S_N2$ reaction, intrinsic and thermodynamic, are discussed in connection with the predictive power of various rate-equilibrium relationships. It has been shown that the PES models can only give correct predictions of changes in structure and energy of the transition state if the activation barrier is dictated by the thermodynamic factor. We concluded that the identity and dissociative $S_N2$ reactions are dominated by the intrinsic component while associative $S_N2$ reactions are predominantly of thermodynamic controlled. Thus in the former cases, the PES models fail, whereas in the latter cases predictions based on the intrinsic factor, the quantum mechanical models, fail. Finally in a general case of equal contributions by thermodynamic and intrinsic factors, the $SN_2$ reaction proceeds by a synchronous process with zero net charge on the reaction center, for which predictions of substituent effects will be the same as for the intrinsic control case.

Kinetic Study of Thermolysin-Catalyzed Synthesis of N-(Benzyloxycarbonyl)-L-Phenylalanyl-L-Leucine Ethyl Ester in an Ethyl Acetate Saturated Aqueous System

  • Nam, Kwang-Ho;Lee, Chang-Kyung;Jeong, Seung-Weon;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.649-655
    • /
    • 2001
  • The kinetics of the thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-leucine ethyl ester (Z-Phe-LeuOEt) from N-(benzyloxycarbonyl)-L-phyenylalanine (Z-Phe) and L-leucine ethyl ester (LeuOEt) in an ethyl acetate saturated aqueous system in a batch operation were studied. The kinetics for the synthesis of Z-Phe-LeuOEt were expressed using a rate equation for the rapid equilibrium random bireactant mechanism. The four kinetic constants involved in the rate equation were determined numerically by the quasi-Newton method so as to fit the calculated results with the experimental data. Within the pH and temperature range examined, the $K_{cat}$ value for the synthesis of Z-Phe-LeuOEt reached a maximum at pH 7.0 and $45^{\circ}C$, whereas the affinity between Z-Phe and thermolysin reached a maximum at pH 6.0 adn $40^{\circ}C$. The inhibitory effect of Z-Phe on the condensation reaction decreased as the pH and temperature decreased. In contrast, they affinity between LeuOEt and thermolysin remained unchanged within the pH and temperature range examined. Therefore, it was concluded that the protonation state of the carboxyl groups. of Z-Phe was more imprtant than that of the amono groups of LeuOEt for the synthesis of Z-Phe-LeuOEt in the present solvent system. The equilibrium yield at pH 6.0 and $30^{\circ}C$ was 8% higher than that at pH 7.0 and $40^{\circ}C$, although the rate was much slower. This result suggested that the affinity between the enzyme and the substrate rather than the overall rate was a more important factor affecting the equilibrium yield, when the peptide synthesis was carried out in a product-precipitation system.

  • PDF

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

Slope Stability Analysis Considering Reinforcing Effects of Geosynthetics (토목섬유의 보강효과를 고려한 사면안정해석)

  • Kim, Kyeong-Mo;Kim, Hong-Tack;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • Generally, to evaluate a slope stability of the geosynthetic reinforced soil slope, the modified version of limit equilibrium method can be used. In most cases, resisting effects of reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equation can be satisfied is proposed. A number of illustrative examples, including published load test of large-scale reinforced retaining wall and centrifuge model tests on the geotextile reinforced soil slopes, are also analyzed. As a result, it is shown that the newly suggested method produces a relatively accurate factor of safety.

  • PDF

Structural assessment of the tetramerization domain and DNA-binding domain of CP2c

  • Jo, Ku-Sung;Ryu, Ki-Sung;Yu, Hee-Wan;Lee, Seu-Na;Kim, Ji-Hun;Kim, Eun-Hee;Wang, Chae-Yeon;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.119-124
    • /
    • 2018
  • Although the transcription factor CP2c has been recently validated as a promising target for development of novel anticancer therapy, its structure has not been solved yet. In the present study, the purified recombinant protein corresponding to the tetramerization domain of CP2c appeared to be well folded, whereas the Elf-1 domain showed a largely unfolded conformation. Particularly, the Elf-1 domain, which contains the putative DNA-binding region, showed a conformational equilibrium between relatively less-ordered and well-ordered conformers. Interestingly, addition of zinc shifted the equilibrium to the relatively more structured conformer, whereas zinc binding decreased the overall stability of the protein, leading to a promoted precipitation. Likewise, a dodecapeptide that has been suggested to bind to the Elf-1 domain also appeared to shift the conformational equilibrium and to destabilize the protein. These results constitute the first structural characterization of the CP2c domains and newly suggest that zinc ion might be involved in the conformational regulation of the protein.