• 제목/요약/키워드: Equilibrium Pressure

Search Result 674, Processing Time 0.023 seconds

Working partial pressure of $CO_2$ gas in aqueous solution

  • Kim Dong-Su
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.47-52
    • /
    • 2005
  • Carbonate species in aqueous solution play an important role in the determination of chemical properties of water in relation with alkalinity, buffer capacity, biological productivity, and so on. These compounds also have reactive characteristics such as interphasal reactions between solid, liquid, and gas phases. In the absence of solid materials, the total amount and relative abundance of each carbonate species are directly influenced by the partial pressure of $CO_2$ gas in the atmosphere, which in turn significantly affects the properties of aquatic system. In the water/wastewater treatment process along with the wastes treatment and recycling process which occurring in aquatic environment, it is essential to figure out its characteristics for their optimization and one of its most influential features upon these processes is determined by carbonate species. To understand the fundamental aspect of the relationship between the partial pressure of $CO_2$ gas and chemical features of water, especially pH, the working partial pressure of pure $CO_2$ gas that produced by contacting the dry ice with water has been estimated based on equilibrium calculation. The equilibrium constants for the dissociation ot carbonic acid were determined using van't Hoff equation and the distribution diagram of carbonate species according to the pH has been constructed to substantiate the results of equilibrium calculation. The estimated working partial pressure of pure $CO_2$ gas was found to be a function of the concentration of carbonates in solution, which suggesting that Prior evaluation of the working partial pressure of gas is essential for a better understanding of aquatic interactions.

The Effect of Pressure and Temperature on the Durene-Iodine Charge Transfer Complex in n-Hexane (듀렌과 요오드 사이의 전하이동착물에 대한 압력과 온도의 영향)

  • Oh Cheun Kwun;Jeong Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 1983
  • The effect of pressures and temperatures on the stabilities of the durene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of complexes were measured at 25, 40 and $60^{\circ}C$ under $1{\sim}1600$ bars. The equilibrium constant of the complex was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift observed at a higher pressure, the blue-shift at a higher temperature, and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

The Effect of TOGU Exercise on the Postural Balance and Foot Pressure Distribution (토구 운동이 자세균형과 족저압 분포에 미치는 영향)

  • Kim, Soon-Ja;Lee, Kwang-Jae
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Background : The purpose of this study to find the Effect of TOGU Exercise on the Postural Balance and Foot Pressure Distribution. Methods : Four male and five female subjects last one year and no damage at all, even unique Foot skin diseases or orthopedic surgical disease who are not selected and applied before and after exercise TOGU and Foot Pressure Distribution of static equilibrium and measured using were compared. Results : After exercise conducted TOGU. right and life the static balance measurements of the height difference between the two sides of the acromion before exercise to 0.8cm and 1.4cm reduction in the movement, and also before and after the static balance measured sagittal the lateral tibial line drawn straight down from the earlobe and vertical slit in the distance before exercise from 5.8cm to 3.4cm decreased after exercise before and after the balance has also improved significantly(p<.05). Static balance of the body, according to the pressure of the foot in the exercise before/after there was no significant difference(p>.05). Conclusion : Dynamic shaking of the body have a positive impact on the static equilibrium could know that.

  • PDF

The Effect of Pressure and Temperature on the Mesitylene-Iodine Charge Transfer Complex in n-Hexane (고압, 고온 유체의 물성연구. 메시틸렌과 요오드 사이의 전하이동착물에 대한 압력과 온도의 영향)

  • Oh Cheun Kwun;Jong Gi Jee;Jeong Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.405-412
    • /
    • 1980
  • The effect of pressures and temperatures on the stabilities of the mesitylene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of complexes were measured at 25, 40 and $60^{\circ}C$ under 1∼1600 bars. The equilibrium constant of the complex was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift observed a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

The Effect of Pressure and Temperature on the Xylene-Iodine Charge Transfer Complex in n-Hexane (크실렌과 요오드 사이의 전하이동 착물에 대한 압력과 온도의 영향)

  • Oh Cheun Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.245-253
    • /
    • 1978
  • The effect of pressures and temperatures on the stabilities of the p-xylene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of complexes were measured at 25, 40 and $60^{\circ}C$ under 1∼1,600 bars. The equilibrium constant of the complex was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift observed a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

Dehydrogenation of Ethylalcohol Catalyzed by Alcoholdehydrogenase Under High Pressure

  • Jee Jong-Gi;Shin Jin-Young;Hwang Jung-Ui
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.50-57
    • /
    • 1989
  • A pressure effect of the dehydrogenation of ethylalcohol catalyzed by alcoholdehydrogenase was observed in Tris-HCl buffer, pH 8.8 from $25^{\circ}C$ to $35^{\circ}C$ under high pressure system by using our new theory. The theory makes it possible for us to obtain all rate and equilibrium constants for each step of all enzymatic reaction with a single intermediate. We had enthalpy and volume profiles of the dehydrogenation to suggest a detail and reasonable mechanism of the reaction. In these profiles, both enthalpy and entropy of the reaction are positive and their values decrease with enhancing pressure. It means that the first step is endothermic reaction, and its strength decrease with elevating pressure. At the same time, all activation entropies have large negative values, which prove that not only a ternary complex has a more ordered structure at transition state, but also water molecules make a iceberg close by the activated complex. In addition to this fact, the first and second step equilibrium states are controlled by enthalpy. The first step kinetic state is controlled by enthalpy but the second step kinetic state is controlled by entropy.

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Kwon C. O.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Gwon Chang-O;Kim Sang-Deok;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.203-212
    • /
    • 1995
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone($5^{\circ}$) geometry. The effective gamma($\bar{r}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30Km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about $3\sim5$ percent. The skin friction coefficient and heat transfer coefficient were also calculated.

  • PDF