• Title/Summary/Keyword: Equilibrium Position

Search Result 234, Processing Time 0.034 seconds

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Proposal of a Time-dependent Method for Determining the Forming Limit of Sheet Metal (판재의 성형한계 결정을 위한 시간의존적 방법의 제안)

  • Kim, S.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Most domestic and international standards on the forming limit diagram (FLD) including ISO 12004-2, use a 'position-dependent method,' which determines the forming limit from a strain distribution measured on the specimen after necking or fracture. However, the position-dependent method has inherent problems such as the incidence of asymmetry of a strain distribution, the estimation of missing data near fracture, the termination time of test, and the deformation due to the new stress equilibrium after a fracture, which is blamed for causing sometimes a significant lab-to-lab variation. The 'time-dependent method,' which is anticipated to be a new international standard for evaluating the forming limit, is expected to greatly improve these intrinsic disadvantages of the position-dependent method. It is because the time-dependent method makes it possible to identify and accurately determine the forming limit, just before the necking point from the strain data as continuously measured in a short time interval. In this study, we propose a new time-dependent method based on a Gaussian fitting of strain acceleration with the introduction of 'normalized correlation coefficient.' It has been shown in this study that this method can determine the forming limit very stably and gives a higher value, which is in comparison with the results of the previously studied position-dependent and time-dependent methods.

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System ((H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구)

  • Choi, Jeong Ho;Yun, Soung Hee;Kim, Yeong Eun;Yoon, Yeo Il;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the $CO_2$ loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonance spectroscopy (NMR) had been conducted to characterize the species distribution of the ($H_2O$-piperidine-$CO_2$) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in $H_2O$-piperidine-$CO_2$ system.

LIMIT CYCLES IN A CUBIC PREDATOR-PREY DIFFERENTIAL SYSTEM

  • Huang Xuncheng;Wang Yuanming;Cheng Ansheng
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.829-843
    • /
    • 2006
  • We propose a cubic differential system, which can be considered a generalization of the predator-prey models, studied by many authors recently (see [18, 20], for instance) The properties of the equilibrium points, the existences, nonexistence, the uniqueness conditions and the relative positions of the limit cycles are investigated. An example is used to show our theorems are easy to be used in applications.

Force-finding of Tensegrity Structure using Optimization Technique

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • A simple force-finding process based on an optimization technique is proposed for tensegrity structures. For this purpose, the inverse problem of form-finding process is formulated. Therefore, the position vector of nodes and element connectivity information are provided as priori. Several benchmark tests are carried out to demonstrate the performance of the present force-finding process. In particular, the force density distributions of simplex tensegrity are thoroughly investigated with the important parameters such as the radius, height and twisting angle of simplex tensegrity. Finally, the force density distribution of arch tensegrity is produced by using the present force-finding process for a future reference solution.

Perturbed Finite Element Analysis of Fold Bifurcations in Load/unload Bard Disk Drive Systems (Load/Unload 하드디스크 드라이브 시스템에의 Fold Bifurcations의 교란 유한요소 해석)

  • Hwang Pyung;Khan Polina V.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.177-178
    • /
    • 2005
  • The load/unload behavior of the hard disk drive slider is studied in terms of the air bearing static characteristics. The numerical continuation methods are applied to calculate suspension force - equilibrium position curve. The critical preloads of the femto size slider are analyzed. The hi-stability conditions are depicted on the skew angle - preload diagram. The perturbation method is used to check the stability of the solution branches.

  • PDF

A path planning of free flying object and its application to the control of gymnastic robot

  • Nam, Taek-Kun;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.526-534
    • /
    • 2003
  • Motions of animals and gymnasts in the air as well as free flying space robots without thruster are subject to nonholonomic constraints generated by the law of conservation of angular momentum. The interest in nonholonomic control problems is motivated by the fact that such systems can not stabilized to its equilibrium points by the smooth control input. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose a control method using bang-bang control for trajectory planning of a 3 link mechanical system with initial angular momentum. We reduce the DOF (degrees of freedom) of control object in the first control phase and determine the control inputs to steer the reduced order system from its initial position to its desired position. Computer simulation for a motion planning of an athlete approximated by 3 link is presented to illustrate the effectiveness of the Proposed control scheme.

Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method (교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석)

  • Hwang Pyung;Khan Polina V.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF

Design of a Swing Up Controller for Inverted Pendulum System (도립진자의 스윙업 제어기 설계)

  • Kwon, Yo-Han;Choi, Won-Ho;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.643-645
    • /
    • 1999
  • In experiment, a real inverted pendulum system has state constraints and limited amplitude of input. These problems make it difficult to design a swing-up controller. To overcome these problems, we design a sliding mode controller considering physical behaviour of the inverted pendulum system. This sliding mode controller uses a switching control action to converge along a specified path derived from energy equation from a state around the path to desired states(standing position). And optimal control method is used to guarantee stability at unstable equilibrium position. The designed controller can be applied to all inverted pendulum systems regardless of the values of their parameters. Compared with previous existing controllers, it is simple and easy to tune. Experimental results are given to show the effectiveness of this controller.

  • PDF