• Title/Summary/Keyword: Equilibrium Position

Search Result 234, Processing Time 0.024 seconds

Mathematical Models that Underlie Computer Simulation of the Trawl Doors for Mid-Water Trawls

  • Gabryuk, Victor Ivanovich;Kudakaev, Vasilii Vladimirovich
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.77-88
    • /
    • 2020
  • This paper presents the coordinate systems used for trawl doors modeling, and provides matrix equations of connection between these systems. The projections of the forces acting on the door into axes of various coordinate systems were obtained, which were used in the door equilibrium equations. Six equilibrium conditions for the door as a solid were obtained: formulas that allow for the door area in plan to be determined; its weight in water; its mass; three moment equations for determining the position of the warp and backstrops fastening points to the door with triangular and quadrangular backstrop arrangements. It was found that the moment equilibrium equations of trawl doors are generally incompatible, which was not found by any of the authors who have previously conducted research into trawl doors. Using the Kronecker-Capelli theorem, the compatibility equation is obtained. This equation includes the coordinates of the backstrop fastening points to the door, which means that these points cannot be randomly selected. The technique of determining the warp and backstrops' fastening points position to the door is described. Conditions of directional (by angle of attack) and roll (in angle of roll) stability of the doors' equilibrium are presented. The equations presented in this paper comprise a mathematical model that allows, when designing the doors, to select optimal parameters, as well as to carry out adjustments for trawling purposes to ensure the stable movement of the doors and the entire trawl system.

Market Pioneering Game for Symmetric Players

  • Lim, Jong-In;Oh, Hyung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.71-80
    • /
    • 1997
  • In this paper, we consider with a market pioneering game among symmetric firms in highly competitive situation. To describe the puzzling situation of timing competition, we construct a dynamic game model and explore the equilibrium solution. As a result, we find a subgame perfect mixed strategy Nash equilibrium conceptually defined by 't$_{0}$ + .elsilon. equilibrium'. Our major finding s include : i) market entry will be occurred in sequential manner even though the condition of each firm is symmetric ii) the optimal timing of market pioneering will be advanced until almost all of the monopolist's profit is dissipated, iii) as the market position of the pioneer is stronger, the timings of the pioneer and the follower are separated, iv) and as the slope of the profit flow is steeper, the entry timing of the two players will be pooled together.

  • PDF

An Optimization Algorithm to Compute Pre-Loads of the Given Static Equilibrium State in Train Dynamics (열차동역학에서 주어진 정적평형상태의 초기하중을 계산하기 위한 최적화 알고리즘)

  • 김종인;박정훈;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a new algorithm to determine the pre-loads that sustain the static equilibrium state in a given position. The algorithm which uses a partial velocity matrix leads to an unconstrained optimization problem to compute the pre-loads of the suspensions. To demonstrate the validity of the proposed algorithm, the static analysis results that employ the pre-loads of three examples are presented using a reliable commercial program. Results of the analysis confirm the validity of the proposed algorithm.

  • PDF

Large displacement Lagrangian mechanics -Part II - Equilibrium principles

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.91-107
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. Each body point is identified by the position it would have if the body were to occupy an arbitrary reference configuration. A result of this approach is that the analyst often describes the body by using quantities that may involve more than one configuration. This is particularly common in incremental calculations and in changes of the choice of reference configuration. With the rise of very powerful computing machinery, the popularity of numerical calculation has become great. Unfortunately, the mechanical theory has been evolved in a piecemeal fashion so that it has become a conglomeration of differently developed patches. The current work presents a unified development of the equilibrium principle. The starting point is the conservation of momentum. All details of configuration are shown. Finally, full dynamic and static forms are presented for total and incremental work.

A Form-finding of Planar Tensegrity Structures

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.143-152
    • /
    • 2012
  • A form-finding procedure is presented for planar tensegrity structures. Notably, a simple decision criteria is proposed to select the desirable candidate position vector from the unitary matrix produced by the eigenvalue decomposition of force density matrix. The soundness of the candidate position vector guarantees faster convergence and produces a desirable form of tensegrity without any member having zero-length. Several numerical examples are provided to demonstrate the capability of the proposed form-finding process.

Analysis on Torque, Flowrate, and Volumetric Displacement of Gerotor Pump/Motor

  • Yun, Hongsik;Ham, Young-Bog;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • It is difficult to analytically derive the relationship among volumetric displacement, flowrate, torque, and rotation speed regarding an instantaneous position of gerotor hydraulic pumps/motors. This can be explained by the geometric shape of the rotors, which is highly complicated. Herein, an analytical method for the instantaneous torque, rotation speed, flowrate, and volumetric displacement of a pump/motor is proposed. The method is based on two physical concepts: energy conservation and torque equilibrium. The instantaneous torque of a pump/motor shaft is determined for the posture of rotors from the torque equilibrium. If the torque equilibrium is combined with the energy conservation between the hydraulic energy of the pump/motor and the mechanical input/output energy, the formula for determining the instantaneous volumetric displacement and flowrate is derived. The numerical values of the instantaneous volumetric displacement, torque, rotation speed, and flowrate are calculated via the MATLAB software programs, and they are illustrated for the case in which inner and outer rotors rotate with respect to fixed axes. The degrees of torque fluctuation, speed fluctuation, and flowrate fluctuation can be observed from their instantaneous values. The proposed formula may provide a better understanding of the design or analysis process of gerotor pumps/motors.

An Application of Evolutionary Game Theory to Platform Competition in Two Sided Market (양면시장형 컨버전스 산업생태계에서 플랫폼 경쟁에 관한 진화게임 모형)

  • Kim, Do-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.4
    • /
    • pp.55-79
    • /
    • 2010
  • This study deals with a model for platform competition in a two-sided market. We suppose there are both direct and indirect network externalities between suppliers and users of each platform. Moreover, we suppose that both users and suppliers are distributed in their relative affinity for each platform type. That is, each user [supplier] has his/her own preferential position toward each platform, and users [suppliers] are horizontally differentiated over [0, 1]. And for analytical tractability, some parameters like direct and indirect network externalities are the same across the markets. Given the parameters and the pricing profile, users and suppliers conduct subscription game, where participants select the platform that gives them the highest payoffs. This game proceeds according to a replicator dynamics of the evolutionary game, which is simplified by properly defining gains from participant's strategy in the subscription game. We find that depending on the strength of these network effects, there might either be multiple stable equilibria, at which users and suppliers distribute across both platforms, or one unstable interior equilibrium corresponding to the market tipping in favor of either platform. In both cases, we also consider the pricing power of competing platform providers under the framework of the Stackelberg game. In particular, our study examines the possible effects of the type of competition between platform providers, which may constrain the equilibrium selection in the subscription game.

A Study on Dynamically Visual System that Vision and Sense of Equilibrium are Fused (시각과 평형각이 융합된 다이나믹한 시각 시스템에 관한 연구)

  • 문용선;정남채
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1354-1360
    • /
    • 2001
  • Calculated velocity distribution was used to visual information by image that is obtained from camera. The visual velocity of object that is obtained from this visual information were fused and experimented. That is, need motion of eye that motion of head that happen by external disturbance or move of camera itself to get stable image in environment that receive external disturbance can be compensated. In this treatise, algorithm that control gaze which vision and sense of equilibrium are fused in environment with external disturbance proposed, and thing that compare with that it controls gaze only that control gaze which vision and sense of equilibrium are fused in the experiment result and position deflection is few confirmed. This was because action of camera prop is effect that record conclusion error of the speed because the appearance speed is decreased being compensated by angular velocity sensor.

  • PDF

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF