• Title/Summary/Keyword: Equations of motion

Search Result 2,337, Processing Time 0.03 seconds

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

A Study on Efficiency Improvement of the Catenary-Pantograph Dynamic Interaction Analysis Program using Shift Forward Method (Shift Forward 방법을 이용한 가선계-판토그래프 동적 상호작용 해석 프로그램의 효율성 향상에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.572-578
    • /
    • 2012
  • In the electric railway vehicles, securing stable current collection performance is an important factor which determines the quality of operation and the maximum speed. In order to predict such current collection performance, various analysis methods have been proposed for a long time. Also, investigations for improving the accuracy of the results and the efficiency of the analysis process have been performed. In this paper, a method for the efficiency improvement has been proposed. This method is based on the basic concept that the system equations of motion of a catenary numerical model include only interactive range with a pantograph. In this paper, an algorithm and generalized process for applying proposed method are introduced. Also, validity of the results and utility of the method was verified and studied.

A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters (동적위치제어용 스러스터 사이의 유체역학적 상호작용에 대한 수치해석 연구)

  • Jin, Doo Hwa;Lee, Sang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

Development of Multi-Purpose Satellite 2 with Deployable Solar Arrays: Part 1. Dynamic Modeling (다목적2호기 태양전지판의 전개시스템 개발: PART 1. 동적 모델링)

  • Gwak,Mun-Gyu;Heo,Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.38-45
    • /
    • 2003
  • This research is concerned with the dynamic modeling of the multi-purpose satellite with deployable solar arrays equipped with strain energy hinges(SEH). To this end, we proposed the use of the equivalent torsional spring for the SEH and derived the equations of motion assuming that the satellite and solar arrays are being rigid. We also considered the effect of the support string for the ground experiment model, which has been observed as a critical factor affecting the deployment in the ground experiments. From the numerical simulation results, it is found that solar arrays are deployed in a similar pattern but the hub motions are different because of the support strings. It was concluded that the non-gravity deployment of the solar arrays can be approximately simulated by the ground experimental facility. The effects of the support string are also investigated by varying the length of the string. It was found that the current length of the string is adequate for the ground experiment. Ground experimental results will follow.

Analysis of the Longitudinal Static Stability and the Drop Trajectory of a Fighter Aircraft's External Fuel Tank (전투기 외부 연료 탱크의 종방향 정안정성 및 투하 궤적 해석)

  • Kang, Chi-Hang;Cho, Hwan-Kee;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Youn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.274-279
    • /
    • 2010
  • The present work is to analyze the longitudinal static stability and the drop trajectory of fighter aircraft's external fuel tank, of which horizontal fin is modified as the 20% scale down size compared with the original one. The analytical results to the pitching stability of external fuel tank using a thin airfoil's aerodynamic force data show the corresponding tendency to results of wind tunnel experiment. Results of trajectory simulation by the 6 degree of freedom equations of motion, comparing with drop trajectories of wind tunnel experiment, are shown that aircraft's attitude affects strongly on horizontal movement but not on the vertical movement. Those results give the reliability to aircraft safety when the external fuel tank with the 20% reduced horizontal fins is released from aircraft based on the flight manual.

Dynamic Interaction Analysis of Vehicle-Suspension Bridge Considering Flexural and Torsional Behaviors and Shear Deformation Effects (휨 및 비틀림 거동 및 전단변형 효과를 고려한 차량-현수교의 동적 상호작용 해석)

  • Kim Moon-Young;Lim Myoung-Hun;Kwon Soon-Duck;Kim Ho-Kyung;Kim Nam-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.361-372
    • /
    • 2005
  • In the previous study(Kim 등, 2004), the finite element method was used for the vortical vibration analysis of suspension bridge with the effects of the shear deformation and the rotary inertia under moving load considering the bridge-vehicle interaction. The purpose of this study is to investigate the effect of an eccentric vehicle and shear deformation. So we firstly performs the eigenvalue analysis for the free vortical and the torsional vibration of suspension bridges using FEM analysis. Next the equations of motion considering interaction between suspension bridges and vehicles/trains are derived using the mode superposition method. And then dynamic analysis was performed using the Newmark method. Finally through the numerical examples, the dynamic responses of bridges are investigated according to the proposed procedure.

Effects of Composite Couplings on Hub Loads of Hingeless Rotor Blade (무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구)

  • Lee, Ju-Young;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.29-36
    • /
    • 2004
  • In this work, the effect of composite couplings on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor blade is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear, torsional warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade response and hub loads are calculated using a finite element formulation in space and time. The aerodynamic forces acting on the blade are calculated by quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap $({\delta}3)$ or $pitch-lag({\alpha}1)$ coupling. It is found that the elastic couplings have a substantial effect on the behavior of $N_b/rev$ hub loads. Nearly 10 to 40% of hub loads is reduced by appropriately tailoring the fiber orientation angles in the laminae of the composite blade.

Numerical Simulation of the Flow around Advancing Ships in Regular Waves using a Fixed Rectilinear Grid System (고정된 직교격자계를 이용한 파랑 중 전진하는 선박주위 유동의 수치시뮬레이션)

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.419-428
    • /
    • 2014
  • This paper presents a numerical simulation method for the flow around advancing ships in regular waves by using a rectilinear grid system. Because the grid lines do not consist with body surface in the rectilinear grid system, the body geometries are defined by the interaction points of those grid lines and the body surface. For the satisfaction of body boundary conditions, no-slip and divergence free conditions are imposed on the body surface and body boundary cells, respectively. Meanwhile, free surface is defined with the modified marker density method. The pressure on the free surface is determined to make the pressure gradient terms of the governing equations continuous, and the velocity around the free surface is calculated with the pressure on the free surface. To validate the present numerical method, a vortex induced vibration (VIV) phenomenon and flows around an advancing Wigley III ship model in various regular waves are simulated, and the results are compared with existing and corresponding research data. Also, to check the applicability to practical ship model, flows around KRISO Container Ship (KCS) model advancing in calm water are numerically simulated. On the simulations, the trim and the sinkage are set free to compare the running attitude with some other experimental data. Moreover, flows around the KCS model in regular waves are also simulated.