• Title/Summary/Keyword: Equal Delay Model

Search Result 28, Processing Time 0.034 seconds

Gate Sizing Of Multiple-paths Circuit (다중 논리경로 회로의 게이트 크기 결정 방법)

  • Lee, Seungho;Chang, Jongkwon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.3
    • /
    • pp.103-110
    • /
    • 2013
  • Logical Effort [1, 2] is a simple hand-calculated method that measures quick delay estimation. It has the advantage of reducing the design cycle time. However, it has shortcomings in designing a path for minimum area or power under a fixed-delay constraint. The method of overcoming the shortcomings is shown in [3], but it is constrained for a single logical path. This paper presents an advanced gate sizing method in multiple logical paths based on the equal delay model. According to the results of the simulation, the power dissipation for both the existing logical effort method and proposed method is almost equal. However, compared with the existing logical effort method, it is about 52 (%) more efficient in space.

On a Logical Path Design for Optimizing Power-delay under a Fixed-delay Constraint (고정 지연 조건에서 전력-지연 효율성의 최적화를 위한 논리 경로 설계)

  • Lee, Seung-Ho;Chang, Jong-Kwon
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.27-32
    • /
    • 2010
  • Logical Effort is a simple hand-calculated method that measures quick delay estimation. It has the advantage of reducing the design cycle time. However, it has shortcomings in designing a path for minimum area or power under a fixed-delay constraint. In this paper, we propose an equal delay model and, based on this, a method of optimizing power-delay efficiency in a logical path. We simulate three designs of an eight-input AND gate using our technique. Our results show about 40% greater efficiency in power dissipation than those of Logical Effort method.

A Delay and Sensitivity of Delay Analysis for Varying Start of Green Time at Signalized Intersections: Focused on through traffic (신호교차로의 출발녹색시간 변화에 따른 직진교통류의 지체 및 지체민감도 분식)

  • Ahn, Woo-Young
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.21-32
    • /
    • 2007
  • The linear traffic model(Vertical queueing model) that is adopted widely in traffic flow estimation assumes that all vehicles have the identical motion before joining a queue at the stop-line. Thus, a queue is supposed to form vertically not horizontally. Due to the simplicity of this model, the departure time of the leading vehicle is assumed to coincide with the start of effective green time. Thus, the delay estimates given by the Vertical queueing model is not always realistic. This paper explores a microscopic traffic model(a Kinematic Car-following model at Signalised intersections: a KCS traffic model) based on the one dimensional Kinematic equations in physics. A comparative evaluation in delay and sensitivity of delay difference between the KCS traffic model and the previously known Vertical queueing model is presented. The results show that the delay estimate in the Vertical queueing model is always greater than or equal to the KCS traffic model; however, the sensitivity of delay in the KCS traffic model is greater than the Vertical queueing model.

  • PDF

Identification of Discrete-Time Low-Order Model from Pulse Response (펄스응답에 의한 저차 이산시간 모델의 식별)

  • Hwang, Jiho;Cha, Seungpyo;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1062-1070
    • /
    • 2018
  • This paper presents a simple identification method for discrete-time low-order model of unknown delay process from pulse response. The key idea is to find the parameters of the model such that the first N moments of the unknown process and the model are equal. We first show that the k-th moment of a process can be determined by the moments of the input and output. The parameters and delay are estimated separately. It is shown that for a given delay, the parameters of the low-order model can be determined by solving linear equations in a matrix form. Delay of the model is estimated such that the integral of the absolute errors (IAE) of the candidate models with possible delays minimizes. The illustrative example shows that the proposed method can directly identify low-order models without order reduction process from a single pulse response.

Internal Model Control of UPS Inverter with Robustness of Calculation Time Delay and Parameter Variation (연산지연시간과 파라미터 변동에 강인한 UPS 인버터의 내부모델제어)

  • Park, Jee-Ho;Keh, Joong-Eup;Kim, Dong-Wan;An, Young-Joo;Park, Han-Seok;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.175-185
    • /
    • 2002
  • In this paper, a new fully digital current control method of UPS inverter, which is based on an internal model control, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The internal model controller is adopted to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. That is, the average current of filter capacitor is been exactly equal to the reference current with a time lag of two sampling intervals. Therefore, this method has an essentially overshoot free reference-to-output response with a minimum possible rise time. The effectiveness of the proposed control system has been verified by the simulation and experimental respectively. From the simulation and experimental results, the proposed system is achieved the robust characteristics to the calculation time delay and parameter variation as well as very fast dynamic performance, thus it can be effectively applied to the power supply for the critical load.

A Novel Algebraic Framework for Analyzing Finite Population DS/SS Slotted ALOHA Wireless Network Systems with Delay Capture

  • Kyeong, Mun-Geon
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.127-145
    • /
    • 1996
  • A new analytic framework based on a linear algebra approach is proposed for examining the performance of a direct sequence spread spectrum (DS/SS) slotted ALOHA wireless communication network systems with delay capture. The discrete-time Markov chain model has been introduced to account for the effect of randomized time of arrival (TOA) at the central receiver and determine the evolution of the finite population network performance in a single-hop environment. The proposed linear algebra approach applied to the given Markov problem requires only computing the eigenvector ${\prod}$ of the state transition matrix and then normalizing it to have the sum of its entries equal to 1. MATLAB computation results show that systems employing discrete TOA randomization and delay capture significantly improves throughput-delay performance and the employed analysis approach is quite easily and staightforwardly applicable to the current analysis problem.

  • PDF

EXTINCTION AND PERMANENCE OF A KIND OF PEST-PREDATOR MODELS WITH IMPULSIVE EFFECT AND INFINITE DELAY

  • Song, Xinyu;Guo, Hongjian
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.327-342
    • /
    • 2007
  • In this paper, a kind of pest-predator model with impulsive effect and infinite delay is considered by the method of chain transform. By using Floquet's theorem, it is shown that there exists a globally asymptotically stable periodic pest eradication solution when the impulsive period is less than or equal to some critical value which is a directly proportional function with respect to the population of release. Furthermore, it is proved that the system is permanent if the impulsive period is larger than some critical value. Finally, the results of the corresponding systems are compared, those results obtained in this paper are confirmed by numerical simulation.

Performance of W-CDMA System for Wideband Multipath Channel Environments (광대역 다중경로 채널특성에 따른 W-CDMA 시스템의 성능분석)

  • 오동진;나인학;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.97-100
    • /
    • 2001
  • The performance of mobile radio communication system is dependent on various factors such as channel environment. Especially, the number of multipath components of mobile radio channel and multipath delay property in CDMA system for different bandwidths are changed. Therefore, using multipath components, Rake receiver provides improvement of performance of W-CDMA system is evaluated by computer simulation over the types of ITU-R wideband channel model and spreading rate. The result shows that the performance of CDMA adapting RAKE receiver is Improved by the increase of multipath components in equal level of the received power.

  • PDF

Delay and Channel Utilization Analysis of IEEE 802.12 VG-AnyLAN Medium Access Control under the Homogeneous Traffic Condition (동질 트래픽 조건에서 IEEE 802.12 VG-AnyLAN 매체접근제어의 지연시간과 채널이용율 해석)

  • Joo, Gi-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.567-574
    • /
    • 2006
  • VG-AnyLAN is a local area network standard developed by the IEEE 802.12 project. While preserving the frame format of IEEE 802.3, VG-AnyLAN adopts a new medium access control called Demand Priority where transmission requests of stations are arbitrated by a control hub in a round-robin manner. Unlike CSMA/CD which is the medium access control of IEEE 802.3, the Demand Priority, while providing the maximum bound on the packet delay, does not put the limit on the network segment size. In this paper, we analyze the delay and the channel utilization performances of the medium access control of IEEE 802.12 VG-AnyLAN. We develope an analytic model of the system under assumptions that each station generates traffic of the equal priority and that the packets are of fixed length. Using the analytic model, we obtain the recursive expression of the average channel utilization and the average access delay The numerical results obtained via analysis are compared to the simulation results of the system for a partial validation of our analysis.

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.