• Title/Summary/Keyword: Epsilon Near Zero

Search Result 6, Processing Time 0.016 seconds

A Novel Epsilon Near Zero Tunneling Circuit Using Double-Ridge Rectangular Waveguide

  • Kim, Byung-Mun;Son, Hyeok-Woo;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, an epsilon near zero (ENZ) tunneling circuit using a double-ridge rectangular waveguide (RWG) is proposed for the miniaturization of a waveguide component. The proposed ENZ channel and is located in the middle of the input-output RWG (IORWG). The ratio of the height to the width of the channel waveguide is very small compared to the IORWG. By properly adjusting the ridge dimensions, the tunneling frequency of the proposed ENZ channel can be lowered to near the cut-off frequency of the IORWG. For the proposed ENZ tunneling circuit, the approach adopted for extracting the effective permittivity, effective permeability;normalized effective wave impedance, and propagation constant from the simulated scattering parameters was explained. The extracted parameters verified that the proposed channel is an ENZ channel and electromagnetic energy is tunneling through the channel. Simulation and measurement results of the fabricated ENZ channel structure agreed.

Left-Handedness 특성 Metamaterial 구조의 마이크로파 부품과 안테나 개발에의 적용 기술

  • Gang, Seung-Taek
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • 본고를 통해 초고주파 이론과 공학 분야는 물론 물리학, 재료공학의 기초 학문 분야에서도 지대한 관심을 모으고 있는 Metamaterial(MTM) 구조에 대해 조명하고자 한다. 먼저 MTM의 핵심이라고 할 수 있는 Left-Handedness(LH) 왼손 전파 법칙과 LH 발생 재질인 Double Negative(DNG) 재질에서의 전파 특성을 상대 유전율과 상대 투자율 평면에서 확인하고, 일반 매질인 Double Positive(DPS)형인 오른손 전파 법칙 Right-Handedness(=RH) 매질과의 결합(Composite Right-and Left-Hnaded=CRLH)에서 얻어지는 특징들을 살펴본다. 특히 DPS와 DNC의 결합에서 얻을 수 있는 음의 공진과 0차 공진(Zero-Order Resonance)을 언급하고 ZOR을 응용한 RF 부품의 소형화와 특성 개선사례를 소개한다. 또한, 안테나와 전자파 산란 특성에 MTM의 특수한 성질을 이용하여, 크기를 줄이거나 표면파를 억제하거나 혹은 방사 개구를 확대 또는 렌즈 특성을 얻어낸 사례도 언급된다 그리고 LH 특성은 아니지만 MTM 계열인 ENG(Epsilon Negative), MNG(Mu Negative), ENZ(Epsilon Near Zero)를 응용한 예들을 보이고, MTM 관점에서 FSS(Frequency Selective Surface )의 특성을 논의하고, 그간에 발표된 대표적 MTM 연구 결과에 대한 소개를 마치고자 한다.

Study on the Electromagnetic Wave Propagation In the Parallel-Plate Waveguide with the Metamaterial ENZ Tunnel Embedded (Metamaterial ENZ 터널이 포함된 평행 평판 도파관 내 전자기파의 전파 특성에 관한 연구)

  • Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • This paper discusses how to change the electromagnetic waves' property in the cut-off causing discontinuity existing in the guiding structure of the RF passive component by using the metamaterial and elaborates on its principle. Particularly, we find and explain, from the viewpoint of electromagnetics and circuit theories, the so-called tunneling condition that when the segment with an extremely narrow cross-section leading to blockage in the parallel-plate waveguide is given the ENZ(Epsilon Near Zero) for its filling material, the wave starts to propagate through the segment. The analysis method as a transmission-line theory taking the discontinuity and material change into consideration is shown valid through the comparison with other methods for analyzing parallel-plate waveguides, and provides the illustration of the S-parameters and impedance describing the characteristics of the tunneling.

An Ultra-thin IR Cut-off Filter Based on Nanostructures (나노구조 기반 초박형 적외선 차단 필터)

  • Hyundo Yang;Jong-Kwon Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • We propose a hyperbolic metastructure based on a nanopatterned metal (Ag)-dielectric (PDMS) multilayer and report on its performance in an infrared (IR) cut-off filter for imaging devices. By optimizing the size of the square-shaped Ag nanopattern and the thickness of PDMS surrounding the Ag nanopattern, the proposed IR cut-off filter blocks 99% of light in the 0.70-1.01 ㎛ wavelength band while maintaining a high transmittance of over 94% in the visible region. Here, the cut-off wavelength band starts at a region above the epsilon-near-zero wavelength of the hyperbolic metastructure and ends at the point where plasmonic absorption appears strongly. It is observed that transmittance in the wavelength region longer than the IR cut-off band increases again due to plasmonic coupling among horizontally adjacent Ag nanopatterns. This metastructure can improve the performance of IR-blocking filters as well as allow it to be manufactured ultra-thin, which is applicable to various planar optical elements and integrated optical components.

Synthesis of Forsterite with High Q and Near Zero TCf for Microwave/Millimeterwave Dielectrics

  • Ohsato, Hitoshi;Ando, Minato;Tsunooka, Tsutomu
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.597-606
    • /
    • 2007
  • With the advent of ubiquitous age, the high quality dielectric materials have been required for the wireless communications available to the millimeterwave as well as microwave frequencies. The utilizable region for the frequency has been expanding to the millimeter-wave region because of the shortage of radio frequency (RF) resources. These high frequencies would be expected for ultra high speed LAN, ETS and car anti-collision system on the intelligent transport system (ITS) and so on. Silicates are good candidates for microwave/millimeterwave dielectrics, because of their low dielectric constant ${\epsilon}_r$ and high quality factor (High Q). Forsterite ($Mg_2SiO_4$) is one of the silicates with low ${\epsilon}_r$ of 6.8 and Q f of 240000 GHz. In this paper, we reviewed following three categories for synthesis of forsterite: (1) Synthesis of high Q forsterite (2) Adjust the temperature coefficient of resonant frequency $TC_f$ (3) Diffusion of $SiO_{4^-}$ and Mg-ions on the formation of forsterite.

Structural and Microwave Dielectric Properties of the Mg$_{1-x}Sr_xTiO-3$ Ceramics with Sintering Temperature and Sr Mole Ratio (소결온도와 Sr몰비에 따른 Mg$_{1-x}Sr_xTiO-3$ 세라믹스의 구조 및 마이크로파 유전특성)

  • Choi, Eui-Sun;Chung, Jang-Ho;Ryu, Ki-Won;Lee, Young-Hie
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.226-231
    • /
    • 2001
  • The $Mg_{1-x}Sr_xTiO_3\;(x=0.02{\sim}0.08)$ ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were $1250^{\circ}C{\sim}1350^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite $SrTiO_3$ and ilmenite $MgTiO_3$ structures were coexisted in the $Mg_{1-x}Sr_xTiO_3\;(x=0.02{\sim}0.08)$ ceramics. The dielectric constant( ${\epsilon}_r$) was increased with addition of $SrTiO_3$. The temperature coefficient of resonant frequency( ${\tau}_f$) was gradually varied from negative value to the positive value with increasing the $SrTiO_3$. The temperature coefficient of resonant frequency of the $Mg_{1-x}Sr_xTiO_3(x=0.036)$ ceramics was near zero, where the dielectric constant, quality factor, and ${\tau}_f$ were 20.65, 95120 and +1.3ppm/$^{\circ}C$, respectively.

  • PDF