• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.024 seconds

Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator (적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구)

  • 정순완;황인성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Characterization for Blend of Siloxane Prepolymer onto Epoxy Resin (Siloxane Prepolymer의 에폭시수지 블렌드 특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Shin, Jae-Sup;Kim, Yeong-Jun
    • Elastomers and Composites
    • /
    • v.32 no.3
    • /
    • pp.179-185
    • /
    • 1997
  • In solution and melting state, SiOD prepolymer was prepared by cured excess DDM with epoxy-terminated siloxane oligomers to control phase separation when DGEBA was blended with PDMS. DGEBA/SiOD prepolymer was also cured at $150^{\circ}C$ for 3hrs. Mechanical and thermal properties of the cured prepolymer specimen were investigated. DGEBA/SiOD60 specimen blended SiOD prepolymer had the best flexural strength, modulus and impact strength. To show crack-formation procedure to morphology, DGEBA/DDM neat specimen was flowed homogeneously in direction of crack energy, whereas DGEBA/SiOD$(30{\sim}60)$ specimen showed heterogeneously dispersed particles and scattered domain of crack energy, but DGEBA/SiOT specimen showed homogeneous phase.

  • PDF

Mechanical and Thermal Characteristics of Cu Particle Filled Epoxy Resin Composites for EMI Shielding (CU 분말 충전된 전자파 차폐용 에폭시 수지 복합체의 기계적, 열적특성)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1591-1593
    • /
    • 1996
  • The experimental study was carried out to investigate the effects of metallic particulate filler on the mechanical properties and the thermal properties of epoxy resin system filled with Cu powder. As Cu contents increased, the tensile strength, surface hardness and $T_d$ decreased. $T_g$ increased and decreased at 300 phr. $E_d$ decreased and increased at 200 phr, because the thermal conducting path of filler was formed and dissipated thermal stress.

  • PDF

Effect of State of Stress on Compressive Failure in Carbon-Fiber/Epoxy Composites; (탄소섬유/에폭시 복합재료의 압축파괴 거동에 부하 스트레스 상태가 미치는 영향)

  • ;S.R. Swanson
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.113-120
    • /
    • 1995
  • 여러가지 두꺼운 복합재료 구조물은 3차원 압축 부하 상태에 노출되는 경우가 발생한다. 이런 경우에 있어 서의 복합재료 압축 강도는 압축 평균 응력을 이용하면 예측이 가능할지도 모른다. 이번 연구 에서는 압축 평균 응력을 이용하여 탄소섬유 강화 복합재료들의 압축 강도를 예측하는 모델을 개발 하고자 한다. 이 모델은 압축강도에 영향을 주는 요소, 초기 misalignment를 고려하였고, 탄소섬유와 수지사이에 접합강도가 임계값을 초과할때 복합재료의 파괴가 일어난다고 가정한다. 또 여라가지 문헌들을 통하여 유압이 접합강도에 미치는 점들을 보여준다. 본 모델을 이용한 예측값들은 가해지는 유압에 따라 증가되며, 실험값들과 비교 분석될 것이다.

  • PDF

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 파괴거동에 관한 연구)

  • 손세원;이두성;장정원;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.908-912
    • /
    • 1996
  • FRMLs consist of thin sheets of high strength metal, which are laminated using a structural adhesive and high strength fibers. ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) of FRMLs is a new class of hybrid material. HERALL(Heracron Reinforced Aluminum Laminate) i.e. domestic ARALL is made of homemade aramid fibers, adhesives and adhesive technique. Domestic aramid fiber is Heracron manufactured by KOLON and domestic adhesive is epoxy resin manufactured by Han Kuk Fiber. In this study, Fatigue crack propagation behavior was examined in a 2024-T3 aluminum alloy/aramid-fiber epoxy 3/2 laminated composites, HERALL and ARAL $L^{ⓡ}$-2 LAMINATE comparing with 2024-T3 aluminum alloy. The extrinsic toughening mechanisms in HERALL and ARALL were examined, the crack bridging behavior of fibers was analyzed by new algorithm, which measures crack bridging stress, and the crack bridging zone length was measured.

  • PDF

Durability and Evaluation of Plastic Insulator for the Outdoor (옥외용 프라스틱 애자의 내구성과 평가)

  • 조한구;강동필;한동희;김인성
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.97-102
    • /
    • 1993
  • The application of epxy composite materials for the outdoor insulating systems has some significant advan-tages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The paper describes the results of high voltage investigations carried out different aging types of epoxy resin insulator and silicone grease coating. The insulators have been exposed 3000 hours to weather-o-meter and 12 months to outdoor. In this connection, the main study of paper is form the basis of develop-ment of principal technologies of epoxy composites which ard: (1)manufacturing of insulator, (2)high vol-tage testing under dry and wet condition, (3)mechani-cal properties, (4)accelerated weather-ometer test and outdoor exposed, artificial polution.

  • PDF

Viscous Properties of Epoxy Resin Filled with Rubber Complex-Treated Silica (고무상 복합물로 표면처리 된 실리카를 충전한 에폭시수지의 점성에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.26 no.4
    • /
    • pp.296-303
    • /
    • 1991
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid $rubber(CTBN{\times}8)$, and vinyl monomer(GMA) in existence of TEA(triethylamine) or BPO(benzoyl peroxide). It was mixed with epoxy resin at a ratio $0{\times}60%$ (vol. % ) of total component. For mixtures, viscous properties were investigated experimentally. 1) Coating ratio depended on pH of mixture and quantity of catalyst. 2) Treated silica represented lower viscosity than untreated. 3) Thixotropic index represented best at silica_content $15{\sim}23%$ and showed more large deviation over $120^{\circ}C$. 4) Relative viscosity followed kernel's at $0{\times}10%$ of silica content and get out of Mooney's at more than 15%.

  • PDF

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Yokozeki, Tomohiro;Iwahori, Yutaka;Ishibashi, Masaru;Yanagisawa, Takashi
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.251-264
    • /
    • 2009
  • Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.