• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.039 seconds

Strengthening Effects of R.C. Beams using Externally attached CFRP Composites with Bond[ Details (CFRP로 보강된 RC보의 부착상세에 따른 보강효과)

  • 박종섭;박영환;조정래;유영준;정우태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.591-596
    • /
    • 2003
  • Many studies have dealt with strengthening by epoxy-bonded CFRP(Carbon Fiber Reinforced Polymer) composites. However, the effects of various influencing factors have not been clarified on the behavior of strengthened RC beams. This study was performed to verify the effects of strengthening due to various bond details of externally attached CFRP Composites. In this study, major test parameters include the bond type and the anchor type. The deflections, failure load, strain of reinforcing bar, concrete and CFRP are measured at each loading step. The failure mode and debonding loads(ultimate loads) are analysed from these measured data. According to the test results, all specimens are failed by intermediate flexural crack induced interfacial debonding.

  • PDF

Characterization of Fiber Direction Influence in CFRP Composites Using Advanced NDE Techniques

  • Im, Kwang-Hee;Jang, Ju-Hwan;Back, Chong-Gui;Jeong, Ok-Su;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1003-1007
    • /
    • 2012
  • A nondestructive technique would be very useful. Advanced NDE T-ray (terahertz ray) techniques of technology and instrumentation has provided a probing field on the electromagnetic spectrum. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS(poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers.

A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites (유리-탄소 하이브리드 복합재료의 파괴인성에 관한 연구)

  • No, Ho-Seop;Go, Seong-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.295-305
    • /
    • 1992
  • The critical strain energy release rate and the failure mechanisms of glass-carbon epoxy resin hybrid composites are investigated in the temperature range of the ambient temperature to 8$0^{\circ}C$. The direction of laminates and the volume fraction are [(+45, -45, 0, 0) sub(2) ] sub(s), 50%, respectively. The major failure mechanisms of these composites are studied using the scanning electron microscope for the fracture surface. Results are summarized as follows: 1) The critical strain energy release rate shows a maximum at ambient temperature and it tends to decrease as temperature goes up. 2) The critical strain energy release rate increases as the content of glass increases, and especially shows dramatic increase for the high glass fiber content specimens. 3) Major failure mechanisms can be classfied such as localized shear yielding, fiber-matrix debonding, matrix micro-cracking, and fiber pull-out and/or delamination.

  • PDF

Temperature dependance of Dielectric strength in Nano-composites (Nano-composites 절연파괴강도의 온도의존성)

  • Lee, Kang-Won;Lee, Hyuk-Jin;Kim, Jong-Hwan;Shin, Jong-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.256-257
    • /
    • 2008
  • Recently, with the increase of demand of electricity, electric cable or electric transfer machine are rapidly developed and meet the demand with the extra high voltage and massive capacity, the dangers of electrical accident of insulator are increasing by the electric stress, insulation degradation and insulation breakdown in insulator. In this paper, it is investigated that the temperature dependance of dielectric strength in nano-composites. We obtained that breakdown voltage of 0.4 [wt%] specimens is higher than the other $SiO_2$ content.

  • PDF

Development of 1-3 Piezo-Composites made by the method of "Dice & Fill" and Estimation of Their Piezoelectric Characteristics (Dice & Fill 방식을 이용한 1-3 복합재 압전진동자 개발 및 압전특성 평가)

  • 김영덕;정우철;김광일;김흥락;김동수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.869-872
    • /
    • 2000
  • The aim of present work was to fabricate the piezoelectric composite materials of low megahertz applications such as non-destructive testing of materials. Among all the various composites, those with PZT rods embedded in Spurrs epoxy with regular periodicity (1-3 connectivity) was fabricated by dice and fill method. The fabricated size of the PZT cell were 0.18X0.18, 0.28X0.28mm$^2$, respectively. And the volume ratio of the PZT cell were 52, 64%, respectively. The resonant frequency and anti-resonant frequency of the composites were 3.5 MHz and 4.3MHz, respectively. The piezoelectric coupling coefficient were about 38 and 37% and the mechanical quality factor were about 12.7 and 22. These value were very different from these of bulk PZT Plate.

  • PDF

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

A Study on Flexural Behaviors of Sandwich Composites with Facesheets of Unequal Thickness (면재 두께가 다른 샌드위치 복합재의 굽힘 거동 연구)

  • Shin, Kwang-Bok;Lee, Jae-Youl;Ryu, Bong-Jo;Lee, Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.201-210
    • /
    • 2007
  • Sandwich composites made of glass fabric epoxy facesheets with aluminum honeycomb core or balsa core is considered for the structural design of bodyshell of a Korean Low Floor Bus. Initially, in order to select the optimal facesheet and core materials in design stage, the flexural response of a sandwich composite is a critical importance. In this study, theoretical formula which could easily and quickly evaluate and obtain the flexural responses such as deflection and flexural stiffness of a sandwich composite subjected to external load was established. This theory could calculate the flexural responses of sandwich composites with narrow as well as wide width and with facesheets of unequal thickness, and also distinguish between the bending and shear effects of deflection. Finite element analysis using ANSYS V10.0 was used to offer the best elements for real sandwich composites, and flexural test according to ASTM C393 was conducted to compare with the results of theoretical formula and finite element analysis. The results show that the flexural responses of sandwich composites using proposed theoretical formula is in good agreement with those of experiment and finite element method.

Study of 2-Dimensional Model for the Thermal Expansion of Composite Materials (열팽창 계수의 2차원 해석 모델에 관한 연구)

  • Jeon, Hyeong-Jin;Yu, Sang-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper proposes the solutions predicting the coefficient of the thermal expansion changes of composites which include the fiber-like shaped ($a_1$ > ($a_2$ = ($a_3$) and the disk-like shaped (al = a2> a3) inclusions like two dimensional geometries, which has one aspect ratios, ${\alpha}$ = ($a_1$ /($a_3$). The analysis follows the procedure developed for elastic moduli by using the generalized approach of Eshelby’s equivalent tensor. The influences of the aspect ratios, on the effective coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The coefficient of thermal expansion of composites (${\theta}_{11}$,${\theta}_{22}$and ${\theta}_{33}$) are investigated. From material data of the composites with glass fiber in epoxy resin, the thermal expansions along the aspect ratio were obtained and similar to the Chow model. The longitudinal coefficients of thermal expansion ${\theta}_{11}$decrease, as the aspect ratios increase. However, the transverse coefficients of thermal expansion ${\theta}_{22}$increase or decrease, as the aspect ratios increase. And both of them decrease, as the concentration increases.

  • PDF