• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.035 seconds

A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials (에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구)

  • 왕종배;박준범;박경원;신철기;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Effect of Nano Filler on the Electrical Properties of Epoxy Composite (에폭시 복합재료의 전기적 특성에 미치는 나노 충진제의 영향)

  • Kim, Joung-Sik;Choi, Hyun-Min;Park, Hee-Doo;Ryu, Boo-Hyung;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.46-46
    • /
    • 2010
  • In this paper, we studied the volume resistivity and the electrical conductivity properties of nano composites to investigate the electrical properties of epoxy composites added nano MgO. The specimens were produced by classifying to 1.0, 3.0, 5.0, 10[wt%] and virgin specimen according to the addition amount of MgO. We measured the volume resistivity of nano filler using the High Resistance Meter(4329A) at the measuring temperature changed to 25, 50, 80, 100, and [$120^{\circ}C$]. As the result, it is confirmed that the volume resistivity was the highest stability and volume resistivity value is $2.6{\times}10^{17}\;[\Omega{\cdot}cm]$ at 3.0[wt%]. And it is confirmed that the electrical conductivity property is sharply increased at low electric filed region and the conductivity current density is rapidly increased at high electric filed region.

  • PDF

Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement (전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가)

  • Jung Jin-Kyu;Park Joung-Man;Kim Dae-Sik;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

A Study on the Influence of Fiber Orientation on the Mode I Interlaminar Fracture Behavior of Carbon/Epoxy Composite materials (탄소섬유/에폭시 복합재료의 Mode I 층간파괴거동에 미치는 섬유배향각의 영향에 관한 연구)

  • 이택순;최영근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.391-401
    • /
    • 1995
  • Several tests of the Double Cantilever Beam(DCB) were carried out for influence of the fiber orientation on the Mode I of the interlaminar fracture behavior in the Carbon/Epoxy composites. The interlaminar fracture toughness of Mode I was estimated based on the energy release rate of Mode I, $G_{I}$. The fracture toughness at crack initiation, $G_{IC}$, increases from type A to type E. The fracture toughness, $G_{IR}$ , is almost constant macroscopically for type A and type E when crack propagates. $G_{IR}$ for types B, C, D increases rapidly at the beginning of the crack growth then it decreases gradually. The fracture surface observation by SEM was also obtained the same results. Consequently the influence of the fiber orientation on the Mode I Interlaminar fracture behavior was made clear.ear.

A study on the structural changes and the TSC characteristics of epoxy composites cured with acid-anhydride (산무수물 경화된 에폭시 복합체의 구조변화와 TSC특성에 관한 연구)

  • 왕종배;이준웅
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 1994
  • In this study, the TSC spectroscopy has been applied to investigate the influence of structural change due to a process of curing reaction on the electrical properties of epoxy composites cured with acid-anhydride. Five TSC peaks appeared in -160-250[.deg.C]: in the low temperature region below glass transition temperature(T$\_$g/), three relaxation mode peaks due to action of side chains, substitution group or terminal groups have been observed, a peak associated with T$\_$g/, appeared in 110[.deg. C] and p peak due to ionic space charges located in 150[.deg.C]. Each peak was separated into elementary peaks by the partial polarization procedure, and the distribution of activation energy and relaxation time were analized to clearify the origin of each peak. Also, overaboundantly added hardener separated a .betha. peak near 10[.deg. C] into two peaks of .betha.$\_$1/(10.deg. C) and .betha.$\_$2/(20.deg. C) according to increasement of forming field, and the separated hardener was oxidated thermally with increasing surrounding temperatures. The expansion of the free volume need in molecular motion and the reduction of the structural packing density through thermal oxidation process increased TSC between .alpha. peak and .betha. peak and decreased T$\_$g/.

  • PDF

DGEBA-MDA-SN-Hydroxyl Group System and Composites : 2. Fracture Energy of Fiber Reinforced Composites (DGEBA-MDA-SN-Hydroxyl Group System의 합성 및 복합재료 제조 : 2. 섬유강화 복합재료의 파괴에너지)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.737-742
    • /
    • 1994
  • The fracture energy of glass fiber/carbon fiber/epoxy resin hybrid composite system was investigated in the aspect of fracture mechanism. Epoxy resin matrix was DGEBA-MDA-SN-HQ system. On the interface of glass fiber and matrix, post debone friction energy provided a major contribution to the fracture energy, and debonding energy and pull-out energy were of the similar value. In the case of fracture on the interface of carbon fiber and matrix, pull-out energy was the major contributor.

  • PDF

The Characteristics of Termally Stimulated Current for Epoxy Composites : The effects of Curing Agents and Fillers (에폭시 복합재료의 열자격전류(TSC) 특성: - 경화제와 충진제의 영향)

  • Wang, Jong-Bae;Park, Jun-Bum;Lee, Joon-Ung;Kim, Hong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1162-1164
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) spectroscopy has been applied to study the influence of the structual cahange and interface on the electrical properties of epoxy composites. Three DGEBA-MeTHPA matrix model samples mixed different ratios and silica($SiO_2$) filled sample and silaln treating-filled sample has been studied. Above room temperature, the relaxation mode $\alpha$ peak associated with Tg has been located at $110^{\circ}C$. Below glass transition temperature(Tg), three relaxation modes are observed in all samples: a $\beta$ mode situated at $10^{\circ}C$, a $\gamma$ mode located at $-40^{\circ}C$ and a $\delta$ mode appeared in $-120^{\circ}C$. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the dielectric relaxation properties have been investigated to compare the the change of the molecular structure and motion to the relaxation properties and conduction mechanism in TSC spectra.

  • PDF

Effect of Electron Beam Irradiation on the Properties of Carbon Fiber (전자선 조사에 따른 탄소섬유 물성 변화)

  • Jeun, Joon Pyo;Shin, Hye-Kyoung;Kim, Hyun Bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.259-263
    • /
    • 2010
  • Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface elements of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermalgravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation.

Developement of New Glass Fiber Reinforced Composite Insulating Material by Reactive Plasma Surface Treatment(II) (반응성 플라즈마 표면처리기법을 도입한 새로운 유리섬유 강화 복합재료의 개발 및 물성연구(II))

  • 박정후;조정수;성문열;김두환;김규섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.216-219
    • /
    • 1995
  • One of the principal problems encountered in the use of glass fiber reinforced Plastic composites(GFRP) is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to develope new process to overcome the disadvantage of chemical agent, we have studied the effect of reactive plasma glass surface treatment on the electrical and mechanical properties of glass fiber reinforced epoxy composites. It is found that the electrical and mechanical characteristics of the composites treated with plasma is improved especially in the dielectric strength by 20% and tensile strength by 15%, whereas the tan $\delta$ is decreased significantly.

  • PDF