• Title/Summary/Keyword: Epoxides

Search Result 135, Processing Time 0.027 seconds

Highly Efficient Microwave-assisted Aminolysis of Epoxides in Water

  • Zuo, Hua;Li, Zhu-Bo;Zhao, Bao-Xiang;Miao, Jun-Ying;Meng, Li-Juan;Jang, Ki-Wan;Ahn, Chul-Jin;Lee, Dong-Ha;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2965-2969
    • /
    • 2011
  • Highly efficient and rapid aminolysis of epoxides with various amines in water under microwave irradiation in the absence of catalyst was developed. Chiral ${\beta}$-amino alcohols were formed in a short time with excellent yields.

반응표면 분석법을 이용한 광학활성 styrene oxide의 생산조건 최적화

  • Lee, Eun-Yeol;Yun, Seong-Jun;Bae, Hyeon-Cheol;Gang, Jin-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.593-596
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis and various biological methods have been investigated for the production of chiral epoxides. In this work, enantioselective resolution of racemic styrene oxide was investigated using an isolated Aspergillus niger sp. for the production of optically pure (S) -styrene oxide. The enantioselectivity and initial hydrolysis rates of racemic substrate were highly dependent on the pH, temperature, and the volume ratio of cosolvent. The experimental sets of pH, temperature, and the volume ratio of cosolvent were designed using central composite experimental design, and the reaction conditions were optimized using response surface analysis. The optimal conditions of pH, temperature, and the volume ration of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4 %(v/v), respectively, and optically pure (S)-styrene oxide (> 99% ee) could be obtained with the 35 % yield by microbial enantioselective hydrolysis reaction.

  • PDF

Coupling Reaction of CO2 with Epoxides by Binary Catalytic System of Lewis Acids and Onium Salts

  • Bok, Taekki;Noh, Eun Kyung;Lee, Bun Yeoul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1171-1174
    • /
    • 2006
  • Various off-the-shelf Lewis acids in conjunction with various onium salts are screened for coupling reaction of $CO_2$ with epoxides. Among the tested ones, $VCl_3/n-Bu_4NOAc$, $VCl_3/(n-Bu_4NCl$ or PPNCl), $FeCl_3/ n-Bu_4NOAc$, and $FeCl_3/ n-Bu_4NOAc$are proved to be highly active. Propylene oxide, epichlorohydrin, styrene oxide, and cyclohexene oxide can be converted over 90% yields to the corresponding cyclic carbonates without the use of organic solvents under mild conditions by 0.1-1.0 mol% catalyst charge.

Fast, Efficient and Regioselective Conversion of Epoxides to β-Hydroxy Thiocyanates with NH4SCN/Zeolite Molecular Sieve 4 Å under Solvent-Free Conditions

  • Eisavi, Ronak;Zeynizadeh, Behzad;Baradarani, Mohammad Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.630-634
    • /
    • 2011
  • Solvent-free conversion of various epoxides to their corresponding $\beta$-hydroxy thiocyanates was carried out successfully with $NH_4SCN$/zeolite molecular sieve $4{\AA}$ system at room temperature. The reactions were completed within 2 - 7 min to give thiocyanohydrins with perfect regioselectivity and isolated yields. Moreover, the zeolite can be reused for several times without losing its activity.

A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

  • Zeynizadeh, Behzad;Sadighnia, Leila
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2644-2648
    • /
    • 2010
  • Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on $SiO_2$. The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on $SiO_2$ showed the better catalytic activity than $Al_2O_3$. Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity.

Selective Reduction of Orgainc Compounds with Al-Fluorodiisobutylalane

  • Cha, Jin Soon;Park, Seung Jin
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • The new MPV-type reagent, Al-fluorodiisobutylalane (DIBAF), has been prepared and their reducing characteristics in the reduction of selected organic compounds containing representative functional groups have been examined in order to find out a new reducing system with unique applicability in organic synthesis. In general, the reagent is extremely mild, showing only reactivity toward aldehydes, ketones, and epoxides. The reagent achives a clean 1,2-reduction of enals to the corresponding allylic alcohols in a 100% purity, but shows no reactivity toward enones. The reagent also shows an excellent regioselective cleavage of substituted epoxides. In addition, DIBAF produces the thermodynamically more stable alcohol epimer in high stereoselectivity in the reduction of cyclic ketones.

  • PDF

Asymmetric Ring Opening of Terminal Epoxides Catalyzed by Chiral Co(III)-BF3 Salen Complex Immobilized on SBA-16

  • Kim, Yong-Suk;Lee, Choong-Young;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1771-1777
    • /
    • 2009
  • The homogeneous B$F_3$ containing chiral Co(III) salen complexes were anchored non-covalently on the surfaces of mesoporous SBA-16 silica containing aluminum species. The Brönsted and Lewis acidic sites are attributed to the immobilization of fluorine functionalized chiral salen complexes on the supports. The FT-IR, UV, ESCA, and NMR analyses were performed to determine the structure of synthesized chiral salen catalysts. These heterogeneous catalysts could be applied in asymmetric ring opening of terminal epoxides by water and phenol derivatives. They showed very high enantioselectivity and yield more than 98% in the catalytic synthesis of optically active products.