• Title/Summary/Keyword: Epoxides

Search Result 135, Processing Time 0.022 seconds

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. VIII. Reaction of Lithium Tripiperidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;이재철;주영철
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.890-895
    • /
    • 1997
  • The approximate rates and stoichiometry of the reaction of excess lithium tripiperidinoaluminum hydride (LTPDA), an alicyclic aminoaluminum hydride, with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 25°) were examined in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTPDA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(diethylamino)aluminum hydride (LTDEA), a representative aliphatic aminoaluminum hydride. In general, the reactivity of LTPDA toward organic functionalities is weaker than LTDEA and much weaker than LAH. LTPDA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and thiols evolve a quantitative amount of hydrogen rapidly. The rate of hydrogen evolution of primary, secondary and tertiary alcohols is distinctive. LTPDA reduces aldehydes, ketones, esters, acid chlorides and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. Tertiary amides and nitriles are also reduced readily to the corresponding amines. The reagent reduces nitro compounds and azobenzene to the amine stages. Disulfides are reduced to thiols, and sulfoxides and sulfones are converted to sulfides. Additionally, the reagent appears to be a good partial reducing agent to convert primary carboxamides into the corresponding aldehydes.

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

Enantioselective Preparation of Metoprolol and Its Major Metabolites

  • Jung, Sang-Hun;Linh, Pham-Tuan;Lim, Hee-Kyun;Kim, Hyun-Ju;Kim, Kyeong-Ho;Kang, Jong-Seong
    • Archives of Pharmacal Research
    • /
    • v.23 no.3
    • /
    • pp.226-229
    • /
    • 2000
  • To obtain the standard compounds of metoprolol for a pharmacokinetic study, a convenient synthetic procedure to prepare enantiomers of metoprolol (3a) and its major metaboites, 2-4-(2-hydroxy-3-isopropylamino)propoxyphenylathanol (3b) and 4-(2-hydroxy-3- isopropylamino) pro-poxyphenylacetic acid (4), was developed from their respective starting materials, 4-(2-methoxyethyl)phenol (1a), 4-(2-hydroxyethyl)phenol (1b) and methyl 4-hydroxyphenylacetate (1c). These phenolic compounds (1a, b, c) were converted in situ to their corresponding phenoxides with sodium hydroxide treatment followed by (R)- or (S)-epichlorohydrin treatment. The resulting epoxides 2 were transformed to 3 through reaction with isopropylamine. Ester 3c was hydrolyzed to the metabolite 4. Measured using the HPLC method on chiral column without any derivatization, the optical purity of enantiomers of metoprolol and o-demethylated metabolite 3b ranged between 96-99 % ee and that of enantiomers of carboxylic acid metabolite 4 ranged 91% ee.

  • PDF

The Reaction of Superoxide with Carbohydrate Sulphonates

  • Shin, Young-Sook;Nam Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.188-191
    • /
    • 1993
  • The reaction between methyl 2,3-di-O-benzyl-4,6-di-O-mesyl-${\alpha}$-D-glucopyranoside (1b) and potassium superoxide resulted in hydrolysis, and gave methyl 2,3-di-O-benzyl-${\alpha}$-D-glucopyranoside (1) as a sole product. When the reaction was performed with a vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-altropyranoside (4b), again the hydrolysis product, methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4) was obtained. However, the reaction of potassium superoxide with another vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-glucopyranoside (3b), nucleophilic displacement took place to afford methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4). Apparently different results from two trans vicinal dimesylates, 3b and 4b are explained by the transient formation of epoxides, methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-allopyranoside (8) and methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-mannopyranoside (9) by $KO_2$. The reaction between the allo epoxide 8 and $KO_2$ gave altro 4. The manno epoxide 9 also afforded altro 4 as the major product. Facile epoxide formation by the reaction of a vicinal dimesylate and superoxide was also observed with 3-O-benzyl-1,2-O-isopropylidene-5,6-di-O-mesyl-${\alpha}$-D-glucofuranose: 5,6-anhydro-3-O-benzyl-1,2-O-isopropylidene-${\beta}$-L-idofuranose was obtained.

Reduction of Representative Organic Functional Groups with Gallane-Trimethylamine

  • 최정훈;오영주;김민정;황북기;백대진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.274-280
    • /
    • 1997
  • The rates and stoichiometry of the reaction of gallane-trimethylamine with selected organic compounds containing representative functional groups were examined in tetrahydrofuran solution under standardized conditions (THF, 0 ℃). And its reducing characteristics were compared with those of aluminum hydride-triethylamine(AHTEA). The rate of hydrogen evolution from active hydrogen compounds varied considerably with the nature of the functional group and the structure of the hydrocarbon moiety. Alcohols, phenol, amines, thiols evolved hydrogen rapidly and quantitatively. Aldehydes and ketones were reduced moderately to the corresponding alcohols. Cinnamaldehyde was reduced to cinnamyl alcohol, which means that the conjugated double bond was not attacked by gallane-trimethylamine. Carboxylic acids, esters, and lactones were stable to the reagent under standard conditions. Acid chlorides also were rapidly reduced to the corresponding alcohols. Epoxides and halides were inert to the reagent. Caproamide and nitrile were stable to the reagent, whereas benzamide was rapidly reduced to benzylamine. Nitropropane, nitrobenzene and azoxybenzene were stable to the reagent, whereas azobenzene was reduced to 1,2-diphenylhydrazine. Oximes and pyridine N-oxide were reduced rapidly. Di-n-butyl disulfide and dimethyl sulfoxide were reduced only slowly, but diphenyl disulfide was reduced rapidly. Finally, sulfones and sulfonic acids were inert to the reagent under the reaction.

Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Lee;Hye Kyu Kim;Jahyo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-72
    • /
    • 1976
  • The addition of one mole of zinc chloride to 2.33 moles of sodium borohydride in tetrahydrofuran at room temperature gave a clear chloride-free supernatant solution of zinc borohydride after stirring three days and standing at room temperature.The approximate rates and stoichiometry of the reaction of zinc borohydride with 54 selected organic compounds were determined in order to test the utility of the reagent as a selective reducing agent. Aldehydes and ketones were reduced rapidly, aromatic ketones being somewhat slowly, and the double bond of cinnamaldehyde was not attacked. Acyl halides were reduced rapidly within one hour, but acid anhydrides were reduced at a moderate rate. Carboxylic acids, both aliphatic and aromatic, were slowly reduced to alcoholic stage. Esters were inert to this reagent but a cyclic ester, γ-butyrolactone, was slowly attacked. Primary amides were reduced slowly with partial evolution of hydrogen, whereas tertiary amides underwent neither reduction nor hydrogen evolution. Epoxides and nitriles were all inert, as well as nitro, azo, and azoxy compounds. Cyclohexanone oxime and phenyl isocyanate were reduced slowly but pyridine was inert. Disulfide, sulfoxide, sulfone and sulfonic acids were stable to this reagent.

  • PDF

Cure Behavior and Thermal Stability of Difunctional/Trifunctional Epoxy Blend System Initiated by Thermal Latent Catalyst (열잠재성 촉매 개시제를 이용한 2관능성/3관능성 에폭시 블렌드계의 경화거동 및 열안정성)

  • Park, Soo-Jin;Kim, Taek-Jin;Lee, Jae-Rock
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1046-1051
    • /
    • 1999
  • Cure behavior and thermal stability of the different ratio of diglycidylether of bisphenol A(DGEBA)/trimethylolpropane triglycidylether(TMP) epoxy blends initiated by 1 wt % N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were studied using DSC and TGA, respectively. Latent properties were performed by measurement of the conversion as a function of temperature using dynamic DSC. Dynamic DSC thermograms of DGEBA/TMP blends revealed that the weak peak was formed by complex formation between the hydroxyl groups in DGEBA and BPH, and between epoxides and BPH in low temperature ranges. The strong peak was considered as an exothermic reaction by the formation of three-dimensional network in high temperature ranges. Isothermal DSC revealed that the reaction rate of the blends was found to be higher than that of the neat TMP. The thermal stabilities in the cured resins were increased with increasing the DGEBA content. These results could be interpreted in terms of the stable aromatic structure, existence of hydroxyl group and high molecular weight of DGEBA.

  • PDF

Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate (CO2로부터 5원환 탄산염의 화학적 고정화 반응을 위한 Metal-Organic Frameworks의 촉매적 응용)

  • Ji, Hoon;Naveen, Kanagaraj;Kim, Dongwoo;Cho, Deug-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.258-266
    • /
    • 2020
  • The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.

Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK using Phylogenetic Analysis (진화적 유연관계 분석을 통한 Aspergillus niger LK의 Epoxide Hydrolase의 특성분석)

  • 김희숙;이은열;이수정;이지원
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • A gene coding for epoxide hydrolase (EH) of Aspergillus niger LK, a fungus possessing the enantioselective hydrolysis activity for racemic epoxides, was characterized by phylogenetic analysis. The deduced protein of A. niger LK epoxide hydrolase shares significant sequence similarity with several bacterial EHs and mammalian microsomal EHs (mEH) and belongs to the a/${\beta}$ hydrolase fold family. EH from A. niger LK had 90.6% identity with 3D crystal structure of lqo7 in Protein Data Bank. Sequence comparison with other source EHs suggested that Asp$\^$l92/, Asp$\^$374/ and His$\^$374/ constituted the catalytic triad. Based on the multiple sequence comparison of the functional and structural domain sequence, the phylogenetic tree between relevant epoxide hydrolases from various species were reconstructed by using Neighbor-Joining method. Genetic distances were so far as 1.841-2.682 but characteristic oxyanion hole and catalytic triad were highly conserved, which means they have diverged from a common ancestor.

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV (UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가)

  • Park, Hee Min;Yang, Won Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.169-179
    • /
    • 2018
  • The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.