• 제목/요약/키워드: Epitopes

Search Result 111, Processing Time 0.021 seconds

Allergenicity Reduction of Milk (우유에서의 알레르겐 저감화 방법)

  • Ha, Woel-Kyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.27-36
    • /
    • 2008
  • This review was written to introduce updated data on the structure and function of the major milk proteins identified as allergens, the characterization of their epitopes in each allergenic milk proteins, and the reduction of milk protein allergenicity. Most mammalian milk protein, even protein present at low concentration, are potential allergens. Epitopes identified in milk proteins are both conformational(structured epitope) and sequential epitopes(linear epitope), throughout the protein molecules. Epitopes on casein and whey proteins are reported to be sequential epitope and conformational epitopes, respectively. Conformational epitopes on whey protein are changed into sequential epitope by heat denaturation during heat treatment. Several methods have been proposed to reduce allergenicity of milk proteins. Most ideal and acceptable method to make hypoallergenic milk or formula, so far, is the hydrolysis of allergenic milk proteins by enzymes that has substrate specificity, such as pepsin, trypsin, or chymotrypsin. Commercial formulas based on milk protein hydrolysate are available for therapeutic purpose, hypoantigenic formula for infants from families with a history of milk allergy and hypoallergenic formula for infants with existing allergic symptoms.

  • PDF

Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6

  • Wang, Yanhua;Wang, Guangxiang;Cai, Jian Ping
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.431-437
    • /
    • 2016
  • The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.

Strategic construction of mRNA vaccine derived from conserved and experimentally validated epitopes of avian influenza type A virus: a reverse vaccinology approach

  • Leana Rich Herrera-Ong
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2023
  • Purpose: The development of vaccines that confer protection against multiple avian influenza A (AIA) virus strains is necessary to prevent the emergence of highly infectious strains that may result in more severe outbreaks. Thus, this study applied reverse vaccinology approach in strategically constructing messenger RNA (mRNA) vaccine construct against avian influenza A (mVAIA) to induce cross-protection while targeting diverse AIA virulence factors. Materials and Methods: Immunoinformatics tools and databases were utilized to identify conserved experimentally validated AIA epitopes. CD8+ epitopes were docked with dominant chicken major histocompatibility complexes (MHCs) to evaluate complex formation. Conserved epitopes were adjoined in the optimized mVAIA sequence for efficient expression in Gallus gallus. Signal sequence for targeted secretory expression was included. Physicochemical properties, antigenicity, toxicity, and potential cross-reactivity were assessed. The tertiary structure of its protein sequence was modeled and validated in silico to investigate the accessibility of adjoined B-cell epitope. Potential immune responses were also simulated in C-ImmSim. Results: Eighteen experimentally validated epitopes were found conserved (Shannon index <2.0) in the study. These include one B-cell (SLLTEVETPIRNEWGCR) and 17 CD8+ epitopes, adjoined in a single mRNA construct. The CD8+ epitopes docked favorably with MHC peptidebinding groove, which were further supported by the acceptable ∆Gbind (-28.45 to -40.59 kJ/mol) and Kd (<1.00) values. The incorporated Sec/SPI (secretory/signal peptidase I) cleavage site was also recognized with a high probability (0.964814). Adjoined B-cell epitope was found within the disordered and accessible regions of the vaccine. Immune simulation results projected cytokine production, lymphocyte activation, and memory cell generation after the 1st dose of mVAIA. Conclusion: Results suggest that mVAIA possesses stability, safety, and immunogenicity. In vitro and in vivo confirmation in subsequent studies are anticipated.

Relationship between Poor Immunogenicity of HLA-A2-Restricted Peptide Epitopes and Paucity of Naïve $CD8^+$ T-Cell Precursors in HLA-A2-Transgenic Mice

  • Choi, Yoon Seok;Lee, Dong Ho;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • We examined the immunogenicity of H-2 class I-restricted and HLA-A2-restricted epitopes through peptide immunization of HLA-A2-transgenic mice that also express mouse H-2 class I molecules. All four of the tested epitopes restricted by H-2 class I robustly elicited T-cell responses, but four of seven epitopes restricted by HLA-A2 did not induce T-cell responses, showing that HLA-A2-restricted peptide epitopes tend to be poorly immunogenic in HLA-A2-transgenic mice. This finding was confirmed in HLA-A2-transgenic mice infected with a recombinant vaccinia virus expressing hepatitis C virus proteins. We examined the precursor frequency of epitope-specific naïve $CD8^+$ T cells in HLA-A2-transgenic and conventional C57BL/6 mice and found that the poor immunogenicity of HLA-A2-restricted peptide epitopes is related to the paucity of naïve $CD8^+$ T-cell precursors in HLA-A2-transgenic mice. These results provide direction for the improvement of mouse models to study epitope repertoires and the immunodominance of human T-cell responses.

Prediction of Promiscuous Epitopes in the E6 Protein of Three High Risk Human Papilloma Viruses: A Computational Approach

  • Nirmala, Subramanian;Sudandiradoss, Chinnappan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4167-4175
    • /
    • 2013
  • A najor current challenge and constraint in cervical cancer research is the development of vaccines against human papilloma virus (HPV) epitopes. Although many studies are done on epitope identification on HPVs, no computational work has been carried out for high risk forms which are considered to cause cervical cancer. Of all the high risk HPVs, HPV 16, HPV 18 and HPV 45 are responsible for 94% of cervical cancers in women worldwide. In this work, we computationally predicted the promiscuous epitopes among the E6 proteins of high risk HPVs. We identified the conserved residues, HLA class I, HLA class II and B-cell epitopes along with their corresponding secondary structure conformations. We used extremely precise bioinformatics tools like ClustalW2, MAPPP, NetMHC, Epi,Jen, EpiTop 1.0, ABCpred, BCpred and PSIPred for achieving this task. Our study identified specific regions 'FAFR(K)DL' followed by 'KLPD(Q)LCTEL' fragments which proved to be promiscuous epitopes present in both human leukocyte antigen (HLA) class I, class II molecules and B cells as well. These fragments also follow every suitable character to be considered as promiscuous epitopes with supporting evidences of previously reported experimental results. Thus, we conclude that these regions should be considered as the important for design of specific therapeutic vaccines for cervical cancer.

Immunization with a soluble CD4-gp120 complex preferentially induces neutralizing anti-Human Immunodeficiency Virus Type lantibodies directed to conformation-dependent epitopes of gp120 (수용성 CD-gp120 결합체의 면역화로 유도된 항 gp120 항체의 특성에 관한 연구)

  • Kang, Chang-Yuil
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.61-67
    • /
    • 1994
  • One fundamental problem in developing an AIDS vaccine is antigenic variation of HIV. Despite a substantial induced immune response in gp120-immunized monkeys and humans, high titers of V3-directed type specific neutralizing antibodies may not be sufficient to neutralize continuously emerging new isolates. Several studies analyzing anti-gp120 antibodies in HIV-infected individuals have clearly indicated that most broadly neutralizing antibodies are directed to conformation-dependent epitopes. Therefore, it seems important to evaluate the potential efficacy of candidate gp120 vaccines at inducing such antibodies, that might be potentially protective against multiple HIV strains. One concern in the development of any recombinant protein as a vaccine is its stability when mixed with an adjuvant. This could be a particularly important factor for recombinant gp120, given the conformational nature of its major, broadly neutralizing, epitopes. We hypothesized that gp120 complexed with recombinant CD4 could stabilize the conformation-dependent epitopes and effectively deliver these epitopes to the immune system. In this study, a soluble gp120-CD4 complex in Syntex Adjuvant Formulation was tested in mice to analyze the anti-gp120 antibody response. With the aim of defining the fine specificity and neutalizing activities of the immune response, 17Mabs were generated and characterized. The studies indicate that the gp120-CD4 complex elicits neutralizing anti-gp120 antibodies, most of which are directed to the conformation dependent epitopes.

  • PDF

T-cell epitope specificity for Porphyromonas gingivalis heat shock protein in periodontitis (치주염환자의 Porphyromonas gingivalis 열충격단백에 대한 T-세포 항원 결정부위 특이성 연구)

  • Lee, Ji-Young;Lee, Ju-Yeon;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2003
  • Due to considerably high degree of sequence homology between bacterial and human heat shock proteins(hsp), it has been widely thought that this protein might be involved in autoimmune disease mechanisms in humans. To elucidate how stress proteins contribute in the immunopathogenesis of periodontitis, the present study was performed to evaluate the T cell immune responses specific to Porphyromonas gingivalis (P. gingivalis) heat shock protein (hsp)60 and T-cell epitope specificities for P. gingivalis hsp60 in periodontitis. Anti-P. gingivalis IgG antibody titers were elevated in all patients. We could establish P. gingivalis hsp-specific T cell ines from the peripheral blood of peridontitis, a mixture of $CD4^+$ and $CD8^+$ cells. Of 108 overlapping synthetic peptides spanning whole P. gingivalis hsp60 moleculc, ten peptides with cpitopes specifities for T-cell were showed. Interestingly, ten epitopes were also identified as T-cell epitopes in the present study as well as B-cell epitopes in peridontitis. Therefore, all the ten representative epitopes were designated as common T-and B-cell epitopes for peridontitis. It is critical in developing a peptide vaccine strategy for potential prevention of periodontitis. It was concluded that P. gingivalis hsp60 might be involved in the immunoregulatory process of periodontitis with heat shock protein specificities.

Screening of the Antigen Epitopes of Basic Fibroblast Growth Factor by Phage Display

  • Xiang, Junjian;Zhong, Zhenyu;Deng, Ning;Zhong, Zhendong;Yang, Hongyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.290-293
    • /
    • 2005
  • In order to investigate the epitope of basic fibroblast growth factor (bFGF) and its immunogenicity, the epitopes of bFGF were screened from the phage display library with monoclonal antibody GF22, which can neutralize the bio-activity of bFGF. By three rounds of screening, the positive phage clones with bFGF epitopes were selected, which can effectively block the bFGF to bind with GF22. Sequence analysis showed that the epitopes shared a highly conservative sequence (Leu-Pro-Pro/Leu-Gly-His-Phe/Ile-Lys). The sequence of PPGHFK was located at 22-27 of the bFGF. The specific immuno-response of mouse could be highly induced by phage clones with the epitopes. And the anti-bFGF activity induced by LPGHFK was 3 times higher than the original sequence, which showed that the mimetic peptide LPLGHIK might be used as a tumor vaccine in the prevention and treatment of tumor.

Linear and Conformational B Cell Epitope Prediction of the HER 2 ECD-Subdomain III by in silico Methods

  • Mahdavi, Manijeh;Mohabatkar, Hassan;Keyhanfar, Mehrnaz;Dehkordi, Abbas Jafarian;Rabbani, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3053-3059
    • /
    • 2012
  • Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family of receptor tyrosine kinases that plays important roles in all processes of cell development. Their overexpression is related to many cancers, including examples in the breast, ovaries and stomach. Anticancer therapies targeting the HER2 receptor have shown promise, and monoclonal antibodies against subdomains II and IV of the HER2 extra-cellular domain (ECD), Pertuzumab and Herceptin, are currently used in treatments for some types of breast cancers. Since anti HER2 antibodies targeting distinct epitopes have different biological effects on cancer cells; in this research linear and conformational B cell epitopes of HER2 ECD, subdomain III, were identified by bioinformatics analyses using a combination of linear B cell epitope prediction web servers such as ABCpred, BCPREDs, Bepired, Bcepred and Elliprro. Then, Discotope, CBtope and SUPERFICIAL software tools were employed for conformational B cell epitope prediction. In contrast to previously reported epitopes of HER2 ECD we predicted conformational B cell epitopes $P1_C$: 378-393 (PESFDGDPASNTAPLQ) and $P2_C$: 500-510 (PEDECVGEGLA) by the integrated strategy and P4: PESFDGD-X-TAPLQ; P5: PESFDGDP X TAPLQ; P6: ESFDGDP X NTAPLQP; P7: PESFDGDP-X-NTAPLQ; P8: ESFDG-XX-TAPLQPEQL and P9: ESFDGDP-X-NTAPLQP by SUPERFICIAL software. These epitopes could be further used as peptide antigens to actively immune mice for development of new monoclonal antibodies and peptide cancer vaccines that target different epitopes or structural domains of HER2 ECD.

Cloning and Expression of Human Immunodeficiency Virus-1 Epitopes in Escherichia coli (대장균에서 사람의 면역결핍 바이러스-1 epitopes 클로닝과 발현에 대한 연구)

  • 유향숙;장원희;박희동;현상원;남상욱;이영익
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • Human immunodeficiency virus type 1 (HIV-1) causes a deadly infectious disease, Acquired Immunodeficiency Syndrome (ADIS). As a first step to develop a reliable and fast diagnostic procedure for HIV-1 infection, we cloned various immunodominant epitopes of HIV-1 in bacterial expression vectors containing tac or trp promoter. While the protein level of direct expression of gp160 was low, trp E fused gp120, gp41 and p17-p24 were produced at high levels (15-30% of total bacterial proteins) in E. coli. Since gp120 and gp41 contain relatively conserved regions which can react with antibodies in the plasma from most of HIV-1 infected individuals, these expression clones were used for large preparations of HIV-1 antigens.

  • PDF