• 제목/요약/키워드: Epithelial sodium channels

검색결과 3건 처리시간 0.018초

Autonomic Neural Regulation of Sodium Transporters and Water Channels in Rat Submandibular Gland

  • Ryu, Sun-Yeol;Jung, Hyun;Kim, Ki-Yung;Kim, Mi-Won;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권2호
    • /
    • pp.65-69
    • /
    • 2006
  • The present study was undertaken to explore the role of autonomic nerves in the regulation of sodium transporters and water channels in the salivary gland. Rats were denervated of their sympathetic or parasympathetic nerves to the submandibular gland. One week later, the expression of Na,K-ATPase, epithelial sodium channels (ENaC), and aquaporins (AQP) was examined in the denervated and contralateral glands. The sympathetic denervation slightly but significantly decreased the expression of ${\alpha}1$ subunit of Na,K-ATPase, whereas the parasympathetic denervation increased it. The expression of ${\alpha}$-subunit of ENaC was significantly increased in both the denervated and contralateral glands either by the sympathetic or parasympathetic denervation. The sympathetic denervation significantly increased the expression of AQP5 in both the denervated and contralateral glands, whereas the parasympathetic denervation decreased it. It is suggested that the autonomic nerves have a tonic effect on the regulation of sodium transporters and AQP water channels in the salivary gland.

Sympathetic and parasympathetic regulation of sodium transporters and water channels in rat submandibular gland

  • Jung, Hyun;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The present study was aimed to explore the role of sympathetic and parasympathetic nerves in the regulation of sodium transporters and water channels in the salivary gland. Rats were denervated of their sympathetic and parasympathetic nerves to the submandibular gland, and the glandular expression of sodium transporters and water channels was determined by Western blot analysis. The expression of either ${\alpha}1$ or ${\beta}1$ subunit of Na, K-ATPase was not significantly affected either by the sympathetic or by the parasympathetic denervation. The expression of subunits of epithelial sodium channels was significantly increased both in the denervated and contralateral glands either by the sympathetic or by the parasympathetic denervation. Neither the sympathetic nor the parasympathetic denervation significantly altered the expression of aquaporin-1 (AQP1). Nor was the expression of AQP4 affected significantly by the parasympathetic or the sympathetic denervation. On the contrary, the expression of AQP5 was significantly increased not only by the parasympathetic but also by the sympathetic denervation. These results suggest that sympathetic and parasympathetic nerves have tonic regulatory effects on the regulation of certain sodium transporters and AQP water channels in the salivary gland.