• Title/Summary/Keyword: Epimer

Search Result 26, Processing Time 0.027 seconds

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF

Gas Chromatographic/Mass Spectrometric Characterization of Dromostanolone Metabolites in Human Urine

  • 김태욱;최만호;정병화;정봉철
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.194-196
    • /
    • 1998
  • The metabolism of dromostanolone (2α-methyl-5α- androstan-17β-ol-3-one) was studied in three adult volunteers after oral dose of 20 mg. Solvent extracts of urine obtained after enzyme hydrolysis were derivatized with MSTFA/TMCS and MSTFA/TMIS. The structures of intact drug and its metabolites were determined by gas chromatography/mass spectrometry (GC/MS) in electron impact (EI) mode. The major metabolite (2α-methyl-5α- androstan-3α-ol-17-one), its 3β-epimer, parent compound, and several hydroxylated metabolites including intact drug were detected by comparing total ion chromatograms of control urine with that of the administered sample. Two epimers of 2α-methyl-5α- androstan-3,17β-diol were detected using selected ion monitoring. The maximum excretion of dromostanolone and 2α-methyl-5α- androstan-3α-ol-17-one was reached in 6.2-15 hr. The half-life of intact dromostanolone was 5.3 hr. About 3.0% of the administered amount was found to be excreted within 95 hr as unchanged form.

Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery (갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과)

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Sang-Min;Jeon, Hee-Young;Lee, Sang-Jun;Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

Inhibition Effect against Tyrosinase of Condensed Tannins from Korean Green Tea (한국산 녹차로부터 분리한 축합형 탄닌의 tyrosinase 저해효과)

  • Kim, Jin-Ku;Cha, Woen-Seup;Park, Joon-Hee;Oh, Sang-Lyong;Cho, Young-Je;Chun, Sung-Sook;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.173-177
    • /
    • 1997
  • For the utilizing of tannins in the functional foods and natural inhibitor against browning reaction by tyrosinase in foods, inhibition effect against tyrosinase of tannins from Korean green tea was determined. Acetone extract from Korean green tea showed inhibition effect against tyrosinase. The gallocatechin compounds showed higher inhibition effect than the catechin compounds. In terms of stereo isomers, (-)-epicatechin compounds had higher inhibition effect than the (+)-catechin compounds. The monomer had higher inhibition effect than the dimer.

  • PDF

Investigation of the Nature of the Endogenous Glucose Transporter(s) in Insect Cells

  • Lee, Chong-Kee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.429-435
    • /
    • 1999
  • Unlike the mammalian glucose transporter GLUT1, little is known about the nature of the endogenous sugar transporter(s) in insect cells. In order to establish the transport characteristics and other properties of the sugar transport proteins of Sf9 cells, a series of kinetic analyses was performed. A saturable transport system for hexose uptake has been revealed in the insect cells. The apparent affinity of this transport system(s) for 2-deoxy-D-glucose was relatively high, the $K_m$ for uptake being <0.5 mM. To further investigate the substrate and inhibitor recognition properties of the insect cell transporter, the ability of other sugars or drugs to inhibit 2-deoxy-D-glucose transport was examined by measuring inhibition constants ($K_j$). Transport was inhibited by D-mannose, D-glucose, and D-fructose. However, the apparent affinity of the C-4 epimer, D-galactose, for the Spodoptera transporter was relatively low, implying that the hydroxyl group at the C-4 position may play a role in the strong binding of glucose and mannose to the transporter. The results also showed that transport was stereoselective, being inhibited by D-glucose but not by L-glucose. It is therefore concluded that insect cells contain an endogenous glucose transport activity that in several aspects resembles the human erythrocyte glucose transporter. However, the mammalian and insect transporters were different in some of their kinetic properties, namely, their affinities for fructose and for cytochalasin B.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

SYNTHESIS OF THE GINSENG GLYCOSIDES AND THEIR ANALOGS

  • Elyakov G. B.;Atopkina L. N.;Uvarova N. I.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.74-83
    • /
    • 1993
  • In an attempt toward the synthesis of the difficulty accessible ginseng saponins the four dammarane glycosides identical to the natural $ginsenosides-Rh_2,$ - F2, compound K and chikusetsusaponin - LT8 have been prepared from betulafolienetriol(=dammar-24-ene-$3{\alpha},12{\beta}\;20(S)-triol).\;3-O-{\beta}-D-Glucopyranoside$ of 20(S) - protopanaxadiol $(=ginsenoside-Rh_2)$ have been obtained by the regio - and stereoselective glycosylation of the $12-O-acetyldammar-24-ene-3{\beta},\;12{\beta},$ 20(S)-triol. The 12-ketoderivative of 20(S)-protopanaxadiol has been used as aglycon in synthesis of chikusetsusaponin - LT8. Attempted regio - and stereoselective glycosylation of the less reactive tertiary C - 20 - hydroxyl group in order to synthesize the $20-O-{\beta}-D-glucopyranoside$ of 20(S)-protopanaxadiol(=compound K) using 3, 12 - di - O - acetyldammar - 24 - ene - $3{\beta},12{\beta},20(S)$-trial as aglycon was unsuccessful. Glycosylation of 3, 12 - diketone of betulafolienetriol followed by $NaBH_4$ reduction yielded the $20-O-{\beta}-D-glucopyranoside\;of\;dammar-24-ene-3{\beta},12{\alpha},$ 20(S)-triol, the $12{\alpha}-epimer$ of 20(S) - protopanaxadiol. Moreover, a number of semisynthetic ocotillol - type glucosides, analogs of natural pseudoginsenosides, have been prepared.

  • PDF

Cyclic Nucleotide Phosphodiesterases as Possible Targets for Ginsenosides

  • Lugnler, C.;Kim, N.D
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.216-223
    • /
    • 1998
  • Cyclic nucleotide phosphodiesterases (PDEs) represent the unique enzymatic system degrddinf cAMP and cGMP which play a major role in the regulation of cell physiology. To investigate a possible molecular mechanism of ginsenosides, their activities were evaluated on PDEs which are recently described is new therapeutic targets. PDEs are classified into 7 families according to their genes (PDEI to PDE7) and are differently distributed in tissues. The IC50 values of ginsenosides were determined on PDEI to PDE 5 chromatographically isolatetl from bovine aorta. The results show that total ginseng saponin extract preferentially inhibits PDE 1 and PDE4 at concentrations nearby 200 ug/ml. Protopanaxadiol (PPD) fraction acts preferentially on PDE4 with and IC50 value of 100 nlml and inhibits also PDEI and PDE5 at 14 to 2 fold higher concentrations, respectively. Protopanaxatriol (PPT) fraction preferentially inhibits PDE 1 with and IC50 value of 170 ug/ml. Compound Rgl, originated from PPT fraction, and RC3 (5) represent the most active compounds towards PDE 1 with IC50 values around 80 UM. However Rg3 (R), epimer of Rgl (5) has no effect on the various PDEs tested, excepted on PDE3 rich is sligthly sensitive Compound Rbl, originated from PPD, acts on both PDEI and PDE4. It if two fold less active than Rgl and Rg3 (5) on PDEI. Taken together, these results mainly suggest that PDEI and PDE4 inhibitions could be a molecular mechanism which would participate in ginsenoside mechanisms, especially the effect of PPD on blood vessel and on CNS.

  • PDF

Sedative Activity of Aporphine and Cyclopeptide Alkaoids Isolated from the Seeds of Zizyphus Vulgaris var. Spinosus, and the Fruits and Stem Bark of Zizyphus Jujuba var. Inermis in mice (산조인 및 대추, 대추나무로부터 단리한 아포르핀과 환상 펩티드 알칼로이드의 생쥐에 대한 진정작용)

  • 한병훈;박명환;한용남
    • YAKHAK HOEJI
    • /
    • v.37 no.2
    • /
    • pp.143-148
    • /
    • 1993
  • The objective of this study was to evaluate the sedative activity of four aporphine alkaloids (APA) and nine cyclopeptide alkaloids(CPA), which had been isolated from the seeds (sanjoin) of Zizyphus vulgaris var. spinosus, and the fruits and stem bark of Zizyphus jujuba var. inermis. The assessment of sedative activity was carried out, employing a hexobarbital-induced sleeping time method in mice. When the relative sedative potency of sanjoinine-A(CPA) was given as one unit, those of nuciferine (APA), lysicamine (APA), chlorpromazine (positive control), and sanjoinine -Ahl (an epimer of sanjoinine-A) were 13, 6.5, 5, and 3, respectively. The sedatvie activities of other CPAs were much lower than those of sanjoinine-A and -Ahl, and other APAs were not active. On heat treatment, nuciferine and lysicamine were degraded into some artifacts which exhibited no sedative activity, while sanjoinine-A was converted into sanjoinine-Ahl which showed more potent sedative activity. These results suggested that nuciferine and sanjoinine-A were major sedative components of native sanjoin, and that sanjoinine-A and its epimeric artifact, sanjoinineAhl were the active principles of roasted sanjoin. It provides a scientific basis for heat-processing (roasting) of this Oriental medicine.

  • PDF

Highly Efficient Synthesis of Conformationally Fixed Bicyclo[3.1.0]hexyl Nucleosides with an Ethenyl Group at C3'-Position as Potential Antiviral Agents

  • Kim, Seong Jin;Woo, Youngwoo;Park, Ah-Young;Kim, Hye Rim;Son, Sujin;Yun, Hwi Young;Chun, Pusoon;Moon, Hyung Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2649-2654
    • /
    • 2014
  • Synthesis of north-5'-methylbicyclo[3.1.0]hexyl adenine and hypoxanthine nucleosides with an ethenyl group at C3' position was successfully achieved by a highly facile method. Methylbicyclo[3.1.0]hexanone (${\pm}$)-7 with three contiguous chiral centers and its epimer (${\pm}$)-6 was remarkably simply constructed only by four steps involving a carbenoid insertion reaction in the presence of rhodium (II) acetate dimer as a metal catalyst, giving a correct relative stereochemistry of the generated three chiral centers. Due to steric hindrance from the concave face of the bicyclo[3.1.0]hexanone system, a Grignard reaction of (${\pm}$)-7 with ethenylmagnesium bromide showed exclusive diastereoselectivity towards the b-face. The Grignard reaction chemoselectively proceeded without reacting with ester functionality. Coupling reaction of glycosyl donor (${\pm}$)-11 with 6-chloropurine nucleobase afforded only the desired $N^9$-alkylated nucleoside without the formation of $N^7$-regioisomer. By the conventional method, 6-chloro group was converted into 6-amino and 6-hydroxy groups to give the desired adenine and hypoxanthine bicyclo[3.1.0]hexyl carbanucleosides with 3'-ethenyl group, respectively.