• Title/Summary/Keyword: Epigenomics

Search Result 31, Processing Time 0.026 seconds

Epigenetic Modification in Chronic Pain: A Literature Review (만성 통증과 후성유전학에 대한 문헌 고찰)

  • Song, Eun-Mo;Cho, Hong-Seok;Kim, Koh-Woon;Cho, Jae-Heung;Park, Hi-Joon;Song, Mi-Yeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.1
    • /
    • pp.63-78
    • /
    • 2020
  • Objectives To review the epigenetic modifications involved in chronic pain and to improve individualized intervention for the chronic pain. Methods Focused literature review. Results Significant laboratory and clinical data support that epigenetic modifications have a potential role for development of chronic pain. Conclusions Epigenetic approach may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future treatment and individualized medicine.

A Review of Three Different Studies on Hidden Markov Models for Epigenetic Problems: A Computational Perspective

  • Lee, Kyung-Eun;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Recent technical advances, such as chromatin immunoprecipitation combined with DNA microarrays (ChIp-chip) and chromatin immunoprecipitation-sequencing (ChIP-seq), have generated large quantities of high-throughput data. Considering that epigenomic datasets are arranged over chromosomes, their analysis must account for spatial or temporal characteristics. In that sense, simple clustering or classification methodologies are inadequate for the analysis of multi-track ChIP-chip or ChIP-seq data. Approaches that are based on hidden Markov models (HMMs) can integrate dependencies between directly adjacent measurements in the genome. Here, we review three HMM-based studies that have contributed to epigenetic research, from a computational perspective. We also give a brief tutorial on HMM modelling-targeted at bioinformaticians who are new to the field.

Single-Cell Sequencing in Cancer: Recent Applications to Immunogenomics and Multi-omics Tools

  • Sierant, Michael C.;Choi, Jungmin
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.17.1-17.6
    • /
    • 2018
  • Tumor heterogeneity, the cellular mosaic of multiple lineages arising from the process of clonal evolution, has continued to thwart multi-omics analyses using traditional bulk sequencing methods. The application of single-cell sequencing, in concert with existing genomics methods, has enabled high-resolution interrogation of the genome, transcriptome, epigenome, and proteome. Applied to cancers, these single-cell multi-omics methods bypass previous limitations on data resolution and have enabled a more nuanced understanding of the evolutionary dynamics of tumor progression, immune evasion, metastasis, and treatment resistance. This review details the growing number of novel single-cell multi-omics methods applied to tumors and further discusses recent discoveries emerging from these approaches, especially in regard to immunotherapy.

The Principles and Applications of High-Throughput Sequencing Technologies

  • Jun-Yeong Lee
    • Development and Reproduction
    • /
    • v.27 no.1
    • /
    • pp.9-24
    • /
    • 2023
  • The advancement in high-throughput sequencing (HTS) technology has revolutionized the field of biology, including genomics, epigenomics, transcriptomics, and metagenomics. This technology has become a crucial tool in many areas of research, allowing scientists to generate vast amounts of genetic data at a much faster pace than traditional methods. With this increased speed and scale of data generation, researchers can now address critical questions and gain new insights into the inner workings of living organisms, as well as the underlying causes of various diseases. Although the first HTS technology have been introduced about two decades ago, it can still be challenging for those new to the field to understand and use effectively. This review aims to provide a comprehensive overview of commonly used HTS technologies these days and their applications in terms of genome sequencing, transcriptome, DNA methylation, DNA-protein interaction, chromatin accessibility, three-dimensional genome organization, and microbiome.

Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques

  • Uijin Kim;Dong-Sung Lee
    • Molecules and Cells
    • /
    • v.46 no.2
    • /
    • pp.86-98
    • /
    • 2023
  • The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.

3D epigenomics and 3D epigenopathies

  • Kyung-Hwan Lee;Jungyu Kim;Ji Hun Kim
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.216-231
    • /
    • 2024
  • Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies.

Genetic and Epigenetic Biomarkers on the Personalized Nutrition

  • An Sung-Whan
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.271-274
    • /
    • 2004
  • Nutritional genomics is a new field of study of how nutrition interacts with an individual's genome or individual responds to individual diets. Systematic approach of nutritional genomics will likely provide important clues about responders and non-responders. The current interest in personalizing health stems from the breakthroughs emerging in integrative technologies of genomics and epigenomics and the identification of genetic and epigentic diversity in individual's genetic make-up that are associated with variations in many aspects of health, including diet-related diseases. Microarray is a powerful screen system that is being also currently employed in nutritional research. Monitoring of gene expression at genome level is now possible with this technology, which allows the simultaneous assessment of the transcription of tens of thousands of genes and of their relative expression of pathological cells such tumor cells compared with that of normal cells. Epigenetic events such as DNA methylation can result in change of gene expression without involving changes in gene sequence. Recent developed technology of DNAarray-based methylation assay will facilitate wide study of epigenetic process in nutrigenomics. Some of the areas that would benefitfrom these technologies include identifying molecular targets (Biomarkers) for the risk and benefit assessment. These characterized biomarkers can reflect expose, response, and susceptibility to foods and their components. Furthermore the identified new biomarker perhaps can be utilized as a indicator of delivery system fur optimizing health.

  • PDF

Regulation of Pharmacogene Expression by microRNA in The Cancer Genome Atlas (TCGA) Research Network

  • Han, Nayoung;Song, Yun-Kyoung;Burckart, Gilbert J.;Ji, Eunhee;Kim, In-Wha;Oh, Jung Mi
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.482-489
    • /
    • 2017
  • Individual differences in drug responses are associated with genetic and epigenetic variability of pharmacogene expression. We aimed to identify the relevant miRNAs which regulate pharmacogenes associated with drug responses. The miRNA and mRNA expression profiles derived from data for normal and solid tumor tissues in The Cancer Genome Atlas (TCGA) Research Network. Predicted miRNAs targeted to pharmacogenes were identified using publicly available databases. A total of 95 pharmacogenes were selected from cholangiocarcinoma and colon adenocarcinoma, as well as kidney renal clear cell, liver hepatocellular, and lung squamous cell carcinomas. Through the integration analyses of miRNA and mRNA, 35 miRNAs were found to negatively correlate with mRNA expression levels of 16 pharmacogenes in normal bile duct, liver, colon, and lung tissues (p<0.05). Additionally, 36 miRNAs were related to differential expression of 32 pharmacogene mRNAs in those normal and tumorigenic tissues (p<0.05). These results indicate that changes in expression levels of miRNAs targeted to pharmacogenes in normal and tumor tissues may play a role in determining individual variations in drug response.

Histone H3 is Digested by Granzyme A During Compromised Cell Death in the Raji Cells

  • Lee, Phil Young;Park, Byoung Chul;Chi, Seung Wook;Bae, Kwang-Hee;Kim, Sunhong;Cho, Sayeon;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1578-1582
    • /
    • 2015
  • Granzyme A (GzmA) was identified as a cytotoxic T lymphocyte protease protein expressed in the nucleus. A number of nuclear proteins are well known as GzmA substrates, and GzmA is related with caspase-independent apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates through in vitro experiment with purified nucleosome. Here, we demonstrated that histone H3 was cleaved by GzmA in vivo during staurosporine-induced cell death. Moreover, histone H3 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. Taken together, we verified that histone H3 is a real substrate for GzmA in vivo in the Raji cells treated by staurosporin.

Cohesion Establishment Factors Stimulate Endonuclease Activity of hFen1 Independently and Cooperatively

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Cho, Sayeon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1768-1771
    • /
    • 2015
  • Human Fen1 protein (hFen1) plays an important role in Okazaki fragment processing by cleaving the flap structure at the junction between single-stranded (ss) DNA and doublestranded (ds) DNA, an intermediate formed during Okazaki fragment processing, resulting in ligatable nicked dsDNA. It was reported that hChlR1, a member of the cohesion establishment factor family, stimulates hFen1 nuclease activity regardless of its ATPase activity. In this study, we found that cohesion establishment factors cooperatively stimulate endonuclease activity of hFen1 in in vivo mimic condition, including replication protein-A-coated DNA and high salt. Our findings are helpful to explain how a DNA replication machinery larger than the cohesion complex goes through the cohesin ring structure on DNA during S phase in the cell cycle.