• Title/Summary/Keyword: Epigenomics

Search Result 31, Processing Time 0.029 seconds

What is Epigenomics and how it will be applied to the food industry? (Epigenomics는 무엇이며 식품산업에 어떻게 응용될 것인가?)

  • Yoo, Jin Young;Han, Ga Eun;Lee, Jong Hun
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Epigenomics is a study that analyzes and quantifies various epigenetic alterations that affect gene expressions in cells from the viewpoint of collective characteristics on biological molecular pools. DNA methylation and histone modification in cells can induce the epigenetic alterations. Especially, epigenetic alterations influenced by external factors as ingested foods and other environmental factors have been examined in the whole genome regions, which provide accumulated data of altered regions or patterns of global genome, Statistical analyses of these regions or patterns enables us to correlate epigenomic changes with human diseases in the whole genome region. Finding meaningful regulators is a major concern of epigenomic research in recent years, and these results will give the food industry an important clue to future food

Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails

  • Sarda, Shrutii;Hannenhalli, Sridhar
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 2014
  • After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.

Year-in-Review of Lung Cancer

  • Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.3
    • /
    • pp.137-142
    • /
    • 2012
  • In the last several years, we have made slow but steady progress in understanding molecular biology of lung cancer. This review is focused on advances in understanding the biology of lung cancer that have led to proof of concept studies on new therapeutic approaches. The three selected topics include genetics, epigenetics and non-coding RNA. This new information represents progress in the integration of molecular mechanisms that to identify more effective ways to target lung cancer.

Omics of Cancer

  • Bhati, Aniruddha;Garg, H.;Gupta, A.;Chhabra, H.;Kumari, A.;Patel, T.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4229-4233
    • /
    • 2012
  • With the advances in modern diagnostic expertise for cancer, certain approaches allowing scanning of the complete genome and the proteome are becoming very useful for researchers. These high throughput techniques have already proven power, over traditional detection methods, in differentiating disease sub-types and identifying specific genetic events during progression of cancer. This paper introduces major branches of omics-technology and their applications in the field of cancer. It also addresses current road blocks that need to be overcome and future possibilities of these methods in oncogenic detection.

Researches of Epigenetic Epidemiology for Infections and Radiation as Carcinogen

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.4
    • /
    • pp.169-172
    • /
    • 2018
  • In recent years, a number of studies have been reported on the various types of cancer arising from epigenetic alterations, including reports that these epigenetic alterations occur as a result of radiation exposure or infection. Thyroid cancer and breast cancer, in particular, have high cancer burden, and it has been confirmed that radiation exposure or onco-viral infection are linked to increased risk of development of these two types of cancer, respectively. Thus, the environment-epigenetic alteration-cancer occurrence (EEC) hypothesis has been suggested. This paper reviews the trends in research supporting this hypothesis for radiation exposure and onco-viral infection. If more evidences accumulate for the EEC hypothesis from future research, those findings may greatly aid in the prevention, early diagnosis, treatment, and prognosis of the thyroid cancer and breast cancer.

Atypical Teratoid Rhabdoid Tumour : From Tumours to Therapies

  • Richardson, Elizabeth Anne;Ho, Ben;Huang, Annie
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.302-311
    • /
    • 2018
  • Atypical teratoid rhabdoid tumours (ATRTs) are the most common malignant central nervous system tumours in children ${\leq}1year$ of age and represent approximately 1-2% of all pediatric brain tumours. ATRT is a primarily monogenic disease characterized by the bi-allelic loss of the SMARCB1 gene, which encodes the hSNF5 subunit of the SWI/SNF chromatin remodeling complex. Though conventional dose chemotherapy is not effective in most ATRT patients, high dose chemotherapy with autologous stem cell transplant, radiotherapy and/or intrathecal chemotherapy all show significant potential to improve patient survival. Recent epigenetic and transcriptional studies highlight three subgroups of ATRT, each with distinct clinical and molecular characteristics with corresponding therapeutic sensitivities, including epigenetic targeting, and inhibition of tyrosine kinases or growth/lineage specific pathways.

Epigenetic biomarkers: a step forward for understanding periodontitis

  • Lindroth, Anders M.;Park, Yoon Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.3
    • /
    • pp.111-120
    • /
    • 2013
  • Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.

Building the Frequency Profile of the Core Promoter Element Patterns in the Three ChromHMM Promoter States at 200bp Intervals: A Statistical Perspective

  • Lent, Heather;Lee, Kyung-Eun;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.152-155
    • /
    • 2015
  • Recently, the Encyclopedia of DNA Elements (ENCODE) Analysis Working Group converted data from ChIP-seq analyses from the Broad Histone track into 15 corresponding chromatic maps that label sequences with different kinds of histone modifications in promoter regions. Here, we publish a frequency profile of the three ChromHMM promoter states, at 200-bp intervals, with particular reference to the existence of sequence patterns of promoter elements, GC-richness, and transcription starting sites. Through detailed and diligent analysis of promoter regions, researchers will be able to uncover new and significant information about transcription initiation and gene function.