• 제목/요약/키워드: Epigenetic modifications

검색결과 73건 처리시간 0.027초

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Epigenetic biomarkers: a step forward for understanding periodontitis

  • Lindroth, Anders M.;Park, Yoon Jung
    • Journal of Periodontal and Implant Science
    • /
    • 제43권3호
    • /
    • pp.111-120
    • /
    • 2013
  • Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Interplay between epigenome and 3D chromatin structure

  • Man-Hyuk Han;Dariya Issagulova;Minhee Park
    • BMB Reports
    • /
    • 제56권12호
    • /
    • pp.633-644
    • /
    • 2023
  • Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the three-dimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions.

Epigenetic aspects of telomeric chromatin in Arabidopsis thaliana

  • Lee, Won Kyung;Cho, Myeon Haeng
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.175-180
    • /
    • 2019
  • Telomeres are nucleoprotein complexes at the physical ends of linear eukaryotic chromosomes. They protect the chromosome ends from various external attacks to avoid the loss of genetic information. Telomeres are maintained by cellular activities associated with telomerase and telomere-binding proteins. In addition, epigenetic regulators have pivotal roles in controlling the chromatin state at telomeres and subtelomeric regions, contributing to the maintenance of chromosomal homeostasis in yeast, animals, and plants. Here, we review the recent findings on chromatin modifications possibly associated with the dynamic states of telomeres in Arabidopsis thaliana.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

히스톤 라이신 메틸화 (Histone Lysine Methylation)

  • 곽상준
    • 생명과학회지
    • /
    • 제17권3호통권83호
    • /
    • pp.444-453
    • /
    • 2007
  • 유핵세포의 게놈(genome)은 단백-DNA복합체인 염색질(chromatin)의 형태로 존재하는데, 생명현상을 유지하기 위해서는 생명체 또는 세포가 처한 상황에 맞게 염색질의 구조를 변화시키는 역동적인 조절기전이 필요하다. 염색질을 구성하는 기본단위는 히스톤 8량체 (histone octamer)를 포함하는 뉴클레오좀(nucleosome)이다. 히스톤 단백에는 여러 종류의 공유결합성 수식이 일어나는데, 그 중 하나가 라이신 잔기(lysine residue)에 일어나는 메틸화이다. 최근 수년간의 연구로 여러 개의 히스톤 라이신 메틸화효소(histone lysine methyltransferase, HKMT), 이에 결합하는 염색질단백 및 메틸화와 관련된 후생유전학적 현상이 밝혀졌으며, 특히 정밀한 연구방법을 동원한 다방면의 실험을 통하여 비록 자세한 기전과 전체적인 윤곽의 규명은 미흡하더라도 라이신 메틸화가 후생유전학적 변화를 초래하는 일부 과정이 규명 되었다. 또한 여러 종류의 라이신 탈메틸화효소가 최근에 발견됨에 따라, 아세틸화, 인산화등 다른 공유결합성 수식보다는 상대 적으로 안정되더라도, 히스톤 메 틸화로 유발되는 후생유전학적 변화가 불가역성이 아님을 알게 되었다.

Epigenetics와 정신장애 (Epigenetics and Psychiatric Disorders)

  • 오대영;양병환;이유상
    • 생물정신의학
    • /
    • 제15권4호
    • /
    • pp.243-253
    • /
    • 2008
  • In the post-genomic era, the mechanisms controlling activation of genes are thought to be more important. Gene-environment interactions are crucial in both development and treatment of psychiatric disorders as they are complex genetic disorders. Epigenetics is defined as a change of gene expression that occurs without a change of DNA sequence and can be heritable by certain mechanisms. Epigenetic changes play essential roles in control of gene activation. DNA methylation, chromatin remodeling and RNAi act as key mechanisms for epigenetic modifications of genes. Here, we review the basic mechanisms of epigenetics and discuss their potential involvement of human diseases, including psychiatric disorders.

  • PDF

Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques

  • Uijin Kim;Dong-Sung Lee
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.86-98
    • /
    • 2023
  • The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.