• Title/Summary/Keyword: Epidemic model

Search Result 149, Processing Time 0.025 seconds

Epidemic Disease Spreading Simulation Model Based on Census Data (센서스 데이터를 기반으로 만든 전염병 전파 시뮬레이션 모델)

  • Hwang, Kyosang;Lee, Taesik;Lee, Hyunrok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Epidemic models are used to analyze the spreading of epidemic diseases, estimate public health needs, and assess the effectiveness of mitigation strategies. Modeling scope of an epidemic model ranges from the regional scale to national and global scale. Most of the epidemic models developed in Korea are at the national scale using the equation-based model. While these models are useful for designing and evaluating national public health policies, they do not provide sufficient details. As an alternative, individual-based models at the regional scale are often used to describe disease spreading, so that various mitigation strategies can be designed and tested. This paper presents an individual-based epidemic spreading model at regional scale. This model incorporates 2005 census data to build the synthetic population in the model representing Daejeon in 2005. The model's capability is demonstrated by an example where we assess the effectiveness of several mitigation strategies using the model.

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF

Markovian Model Analysis of Influenza System (인플루엔자 유행의 마르코프 모델 해석)

  • 정형환;김권수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.440-446
    • /
    • 1984
  • This thesis investigates the quantitative aspect of epidemic phenomena utilizing the analytical method of discrete time systems based on the theory of Markov processes. In particular, the pattern on the epidemic character of Influenza was analyzed by the mathematical model of Influenza system, which is derived according to the ecologic relationship between five epidemiolgic states of individuals. The quantitative aspects of the model was characterized by digital computer simulations. The main results were obtained as follows: 1) A Markovian model of influenza system represents accurate spead curve. 2) The latent period of influenza has the standard deviation of 1.98 and also the incubation period is 2.68. 3) If the value of susceptibilities in the pre-epidemic period is less than 20% of the population, the epidemic will occur sporadically. 4) The initial value of susceptibilties obtained by this markov theory is less about 10% of total population than the obtained value according to the deterministic model.

  • PDF

STABILITY OF AN SIRS EPIDEMIC MODEL WITH A VARIABLE INCIDENCE RATE AND TIME DELAY

  • Seo, Young Il;Cho, Gi Phil;Chae, Kyoung Sook;Jung, Il Hyo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 2013
  • The purpose of this paper is to prove existence of solutions of an SIRS epidemic model with time delay of continuous type and the variable incidence rate and to investigate some asymptotic behaviors of the SIRS epidemic model. An example illustrating the stability of the model is given. The results extend the corresponding results in the literature.

A DELAYED SIR EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE AND PULSE VACCINATION

  • Du, Yanke;Xu, Rui
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1089-1099
    • /
    • 2010
  • An SIR epidemic model with pulse vaccination and time delay describing infection period is investigated. The global attractiveness of the infection-free periodic solution is discussed, and sufficient condition is obtained for the permanence of the system. Our results indicate that a large vaccination rate or a short period of pulsing leads to the eradication of the disease.

A Note on Estimation Under Discrete Time Observations in the Simple Stochastic Epidemic Model

  • Oh, Chang-Hyuck
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.133-138
    • /
    • 1993
  • We consider two estimators of the infection rate in the simple stochastic epidemic model. It is shown that the maximum likelihood estimator of teh infection rate under the discrete time observation does not have the moment of any positive order. Some properties of the Choi-Severo estimator, an approximation to the maximum likelihood estimator, are also investigated.

  • PDF

BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION

  • Xu, Changjin;Liao, Maoxin
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.321-338
    • /
    • 2011
  • In this paper, a class of delayed epidemic model with diffusion is investigated. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation are also carried out to support our analytical findings. Finally, biological explanations and main conclusions are given.

System Dynamics Approach to Epidemic Compartment Model: Translating SEIR Model for MERS Transmission in South Korea (전염병 구획 모형에 대한 시스템다이내믹스 접근법: 국내 MERS 전염 SEIR 모형의 해석 및 변환)

  • Jung, Jae Un
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.259-265
    • /
    • 2018
  • Compartment models, a type of mathematical model, have been widely applied to characterize the changes in a dynamic system with sequential events or processes, such as the spread of an epidemic disease. A compartment model comprises compartments, and the relations between compartments are depicted as boxes and arrows. This principle is similar to that of the system dynamics (SD) approach to constructing a simulation model with stocks and flows. In addition, both models are structured using differential equations. With this mutual and translatable principle, this study, in terms of SD, translates a reference SEIR model, which was developed in a recent study to characterize the transmission of the Middle East respiratory syndrome (MERS) in South Korea. Compared to the replicated result of the reference SEIR model (Model 1), the translated SEIR model (Model 2) demonstrates the same simulation result (error=0). The results of this study provide insight into the application of SD relative to constructing an epidemic compartment model using schematization and differential equations. The translated SD artifact can be used as a reference model for other epidemic diseases.

Likelihood Ratio Test for the Epidemic Alternatives on the Zero-Inflated Poisson Model (변화시점이 있는 영과잉-포아송모형에서 돌출대립가설에 대한 우도비검정)

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.247-253
    • /
    • 1998
  • In ease of the epidemic Zero-Inflated Poisson model, likelihood ratio test was used for testing epidemic alternatives. Epidemic changepoints were estimated by the method of least squares. It were used for starting points to estimate the maximum likelihood estimators. And several parameters were compared through the Monte Carlo simulations. As a result, maximum likelihood estimators for the epidemic chaagepoints and several parameters are better than the least squares and moment estimators.

  • PDF