• Title/Summary/Keyword: Epidemic Simulation

Search Result 46, Processing Time 0.023 seconds

A Hybrid Modeling Method for RCS Worm Simulation (RCS 웜 시뮬레이션을 위한 Hybrid 모델링 방법)

  • Kim, Jung-Sik;Park, Jin-Ho;Cho, Jae-Ik;Choi, Kyoung-Ho;Im, Eul-Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.43-53
    • /
    • 2007
  • Internet becomes more and more popular, and most companies and institutes use web services for e-business and many other purposes. With the explosion of Internet, the occurrence of cyber terrorism has grown very rapidly. Simulation is one of the most widely used method to study internet worms. But, it is quite challenging to simulate very large-scale worm attacks because of various reasons. In this paper, we propose a hybrid modeling method for RCS(Random Constant Spreading) worm simulation. The proposed hybrid model simulates worm attacks by synchronizing modeling network and packet network. So, this model will be both detailed enough to generate realistic packet traffic, and efficient enough to model a worm spreading through the Internet. Moreover, our model have the capability of dynamic updates of the modeling parameters. Finally, we simulate the hybrid model with the CodeRed worm to show validity of our proposed model for RCS worm simulation.

Evolutionary Model of Depression as an Adaptation for Blocked Social Mobility

  • Park, Hanson;Pak, Sunyoung
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives In regard to the social competition hypothesis, depression is viewed as an involuntary defeat strategy. A previous study has demonstrated that adaptation in microenvironments can result in a wide range of behavioural patterns including defense activation disorders. Using a simulation model with evolutionary ecological agents, we explore how the fitness of various defence activation traits has changed over time in different environments with high and low social mobility. Methods The Evolutionary Ecological Model of Defence Activation Disorder, which is based on the Marginal Value Theorem, was used to examine changes in relative fitness for individuals with defensive activation disorders after adjusting for social mobility. Results Our study examined the effects of social mobility on fitness by varying the d-values, a measure of depression in the model. With a decline in social mobility, the level of fitness of individuals with high levels of defense activation decreased. We gained insight into the evolutionary influence of varying levels of social mobility on individuals' degrees of depression. In the context of a highly stratified society, the results support a mismatch hypothesis which states that high levels of defence are detrimental. Conclusions Despite the fact that niche specialization in habitats composed of multiple microenvironments can result in diverse levels of defensive activation being evolutionary strategies for stability, decreased social mobility may lead to a decrease in fitness of individuals with highly activated defence modules. There may be a reason behind the epidemic of depression in modern society.

Mobility-Aware Mesh Construction Algorithm for Low Data-Overhead Multicast Ad Hoc Routing

  • Ruiz, Pedro M.;Antonio F., Gomez-Skarmeta
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.331-342
    • /
    • 2004
  • We study the problem of controlling data overhead of mesh-based multicast ad hoc routing protocols by adaptively adding redundancy to the minimal data overhead multicast mesh as required by the network conditions. We show that the computation of the minimal data overhead multicast mesh is NP-complete, and we propose an heuristic approximation algorithm inspired on epidemic algorithms. In addition, we propose a mobility-aware and adaptive mesh construction algorithm based on a probabilistic path selection being able to adapt the reliability of the multicast mesh to the mobility of the network. Our simulation results show that the proposed approach, when implemented into ODMRP, is able to offer similar performance results and a lower average latency while reducing data overhead between 25 to 50% compared to the original ODMRP.

Optimal Internet Worm Treatment Strategy Based on the Two-Factor Model

  • Yan, Xiefei;Zou, Yun
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.81-88
    • /
    • 2008
  • The security threat posed by worms has steadily increased in recent years. This paper discusses the application of the optimal and sub-optimal Internet worm control via Pontryagin's maximum principle. To this end, a control variable representing the optimal treatment strategy for infectious hosts is introduced into the two-factor worm model. The numerical optimal control laws are implemented by the multiple shooting method and the sub-optimal solution is computed using genetic algorithms. Simulation results demonstrate the effectiveness of the proposed optimal and sub-optimal strategies. It also provides a theoretical interpretation of the practical experience that the maximum implementation of treatment in the early stage is critically important in controlling outbreaks of Internet worms. Furthermore, our results show that the proposed sub-optimal control can lead to performance close to the optimal control, but with much simpler strategies for long periods of time in practical use.

  • PDF

On an Epidemic Model in a Closed Stratified Population (밀폐된 계층인구에 있어서 유행병 모델)

  • Jeong, Hyeong-Hwan;Ju, Su-Won;Lee, Gwang-U
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.365-370
    • /
    • 1993
  • Of the assumptions commonly used in continuous infection model, the least likely to be even approximately true in large population, is that of homogeneous mixing. In this paper, We investigate a model for the spread of infection amongst a population which is divided into classes, such that the individuals of each class mix homogeneously amongst themselves, but mix to a lesser degree with individuals of other class. The stochastic model in this form is intractable and approximations are made, yielding results in reasonable agreement with simulation trials.

  • PDF

Mathematical Modeling for the Transmission Dynamics of HIV infection and AIDS with Heterogeneity in Sexual Activity (성 활동 성분을 고려한 HIV 감염과 AIDS의 전염특성에 관한 수학적 모델화)

  • Chung, Hyeng-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.597-603
    • /
    • 2001
  • In the mathematical model for the transmission dynamics of HIV infection described in previous papers, the population under consideration is assumed to be homogeneous community of homosexual males for which the parameter x represents the constant rate at which individual members of the population acquire new sexual partners. This is a gross oversimplification since it is well known that individuals vary widely in their levels of sexual activity and in this papers the heterogeneous model is modified to allow for this variation. The pattern on the epidemic character of HIV, the causative agent of AIDS, was analysed by heterogeneous-mixing model. The computer simulation was performed using real date.

  • PDF

Modeling Circular Data with Uniformly Dispersed Noise

  • Yu, Hye-Kyung;Jun, Kyoung-Ho;Na, Jong-Hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.651-659
    • /
    • 2012
  • In this paper we developed a statistical model for circular data with noises. In this case, model fitting by single circular model has a lack-of-fit problem. To overcome this problem, we consider some mixture models that include circular uniform distribution and apply an EM algorithm to estimate the parameters. Both von Mises and Wrapped skew normal distributions are considered in this paper. Simulation studies are executed to assess the suggested EM algorithms. Finally, we applied the suggested method to fit 2008 EHFRS(Epidemic Hemorrhagic Fever with Renal Syndrome) data provided by the KCDC(Korea Centers for Disease Control and Prevention).

Mathematical Modelling for The Transmission Dynamics of HIV infection and AIDS (HIV감염과 AIDS의 전파특성에 관한 수학적 모델화)

  • Chung, Hyeng-Hwan;Joo, Seok-Min;Chung, Mun-Kyu;Lee, Kwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.699-702
    • /
    • 1998
  • This study investigates the population model of the spread of HIV/AIDS which the infection is generated by an infectious in dividual in a population of susceptibles. A mathematical model is presented for the transmission dynamics of HIV infection within the communities of homosexual males. The pattern on the epidemic character of HIV, the causative agent of AIDS, was analysed by the mathematical model of AIDS system which is derived according to the ecological relationship between five epidemilogic states of individuals. The computer simulation was performed using real data.

  • PDF

Impact of Trust-based Security Association and Mobility on the Delay Metric in MANET

  • Nguyen, Dang Quan;Toulgoat, Mylene;Lamont, Louise
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • Trust models in the literature of MANETs commonly assume that packets have different security requirements. Before a node forwards a packet, if the recipient's trust level does not meet the packet's requirement level, then the recipient must perform certain security association procedures, such as re-authentication. We present in this paper an analysis of the epidemic broadcast delay in such context. The network, mobility and trust models presented in this paper are quite generic and allow us to obtain the delay component induced only by the security associations along a path. Numerical results obtained by simulations also confirm the accuracy of the analysis. In particular, we can observe from both simulation's and analysis results that, for large and sparsely connected networks, the delay caused by security associations is very small compared to the total delay of a packet. This also means that parameters like network density and nodes' velocity, rather than any trust model parameter, have more impact on the overall delay.

Patch Model-Based Epidemic Simulation System (패치 모델 기반의 전염병 시뮬레이션 시스템)

  • Choi, Hoon;Park, Dong-In
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1465-1468
    • /
    • 2010
  • 지난 몇 년 동안 전염병 확산을 분석하기 위해 InfluSim 을 기반으로 한 시뮬레이션 모델에 대한 연구가 진행되어 왔다. InfluSim 은 국내 각 지역의 인구 통계학적 특성과 인구 이동 등을 고려하지 않는 한계점이 있다. 이러한 이유로 InfluSim 에 의한 시뮬레이션 결과로부터 전염병 확산에 대한 방역 대책을 마련하는 것은 부적절한 측면이 있다. 이러한 문제점을 극복하기 위해, 우리는 패치 모델을 개발하였다. 패치 모델은 전국을 16 개 권역으로 나누어 각 지역의 인구 통계학적인 특성을 고려하고, 각 지역 간의 인구 이동을 고려한다. 패치 모델은 InfluSim 모델을 기반으로 하고, 16 개 지역의 인구 통계학적 특성 및 지역 간의 인구 이동량을 네트워크 모델로 보완하였다. 본 논문은 패치 모델 기반의 시뮬레이션 시스템에 대해 서술한다.