• 제목/요약/키워드: Epidemic Model

검색결과 155건 처리시간 0.024초

Effectiveness of a Health Educational Program Based on Self-Efficacy and Social Support for Preventing Liver Fluke Infection in Rural People of Surin Province, Thailand

  • Kaewpitoon, Soraya J;Thanapatto, Sirisuda;Nuathong, Wimonya;Rujirakul, Ratana;Wakkuwattapong, Parichart;Norkaew, Jun;Kujapun, Jirawoot;Padchasuwan, Natnapa;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1111-1114
    • /
    • 2016
  • Opisthorchiasis is a major problem in Thailand particularly in northeast region which also has a high incidence of cholangiocarcinomas. Since health modification is needed, this quasi-experimental study aimed to assess the effectiveness of a health education program based on self-efficacy and social support in Tha Tum district, Surin province, Thailand. A total of 70 participants were purposive selected with a history of opisthorchiasis. Participants were divided into experimental and control groups, each with 35 subjects. The experimental group received a health education program composed of: (1) knowledge improvement, lectured with multimedia, demonstration, brochure, and handbook; (2) group discussion about their health beliefs, sharing their ideas and experience; and (3) social support from village health volunteers (VHV), heads of villages (HV), friends, and members of families, and public health officer (PHO). Follow-up was by PHO/VHV/HV, with provision of certificates and flasg for household that did not eat raw fish. Data were collected by predesigned questionnaires after implementation of the program for 3 months. Comparative data was analyzed by paired simple t-test and independent t-test. The results revealed that the experimental group had mean score of knowledge higher more than before the experiment (mean difference=3.1, t=3.915, 95%CI-3.3, -1.8 p-value=0.001), and the control group (mean difference=2.5, t=4.196, 95%CI=1.4, 3.6, p-value=0.001) with statistical significance. The mean scores of practice were higher than before the experiment (mean difference=4.6, t=4.331, 95%CI-5.3, -3.1, p-value=0.001), and control group (mean difference=4.4, t=6.142, 95%CI=4.2, 7.9, p-value=0.001). The mean scores of perceived susceptibility and perceived severity of opisthorchiasis, al well as perceived benefits and perceived barriers to prevention of opisthorchiasis, were also higher than before the experiment and in the control group (p-value <0.001). In conclusion, this was a successful health education program for liver fluke avoidance. Therefore, it may useful for further behavior modification in the other epidemic areas.

Fine mapping of rice bacterial leaf blight resistance loci on K1 and K2 of Korean races of Xoo (Xanthomonas oryzae) using GWAS analysis

  • 현도윤;이정로;조규택;;신명재;이경준
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.62-62
    • /
    • 2019
  • Bacterial leaf blight(BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 192 accessions was used in the genome-wide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. A total of 192 accessions of rice germplasm were selected on the basis of the bioassay using four isolated races of Xoo such as K1 and K2. The selected accessions was used to prepare 384-plex genotyping by sequencing (GBS) libraries and Illumina HiSeq 2000 pairedend read was used for GBS sequencing. GWAS was conducted using TASSEL 5.0. The TASSEL program uses a mixed linear model (MLM). The results of the bioassay using a selected set of 192 accessions showed that a large number of accessions (93.75%) were resistant to K1 race and K2 resistant germplasm proportion remained between 66.67. The genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than 5 (K1 and K2) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. These SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races. The significant loci detected have also been illustrated and make the CPAS markers for NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice.

  • PDF

운동 과정 추적의 자동화를 위한 전이 규칙 모델의 구현 (Implementation of a Transition Rule Model for Automation of Tracking Exercise Progression)

  • 정다니엘;고일주
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권5호
    • /
    • pp.157-166
    • /
    • 2022
  • 운동은 건강한 삶의 영위에 필요하지만 코로나19와 같은 전염병 유행 상황에서 비대면 환경에서 진행되는 것이 권장된다. 그러나 기존의 비대면 방식의 운동 콘텐츠에서는 운동 동작의 인식은 가능하지만 이를 해석해서 피드백 정보를 제공해주는 과정이 자동화되지 않았기 때문에 피드백이 트레이너의 눈대중으로 이루어지는 한계가 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해서 운동 내용 및 이를 구성하는 동작을 추적하기 위해 공식화된 규칙을 만드는 방법을 제안한다. 이러한 규칙을 만들기 위해서는 전체적인 운동 내용의 진행 규칙을 먼저 만들고, 운동을 구성하는 동작의 추적 규칙을 만든다. 동작의 추적 규칙은 동작을 여러 단계로 나누고 단계를 나누는 키 프레임 자세를 정의하는 것에서 출발하여 키 프레임 자세로 대표되는 상태와 상태 간의 전이 규칙을 만듦으로써 생성될 수 있다. 이렇게 생성한 규칙은 모션 캡쳐 장비를 이용한 자세 및 동작 인식기술의 사용을 전제로 하며 이러한 기술 적용의 자동화를 위한 논리적인 전개에 사용된다. 본 논문에서 제안한 규칙을 사용하면 운동 과정에서 나타나는 동작을 인식하는 것뿐만 아니라 동작의 전 과정에 대한 해석의 자동화가 가능하여 인공지능 트레이닝 시스템 등 보다 진보된 콘텐츠 제작이 가능해진다. 이에 따라 운동 과정에 대한 피드백의 질을 높일 수 있다.

다중 웹 데이터와 LSTM을 사용한 전염병 예측 (Prediction of infectious diseases using multiple web data and LSTM)

  • 김영하;김인환;장백철
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.139-148
    • /
    • 2020
  • 전염병은 오래전부터 인류를 괴롭혀 왔으며 이를 예측 하고 예방하는 것은 인류에게 있어 큰 과제였다. 이러한 이유로 지금까지도 전염병을 예측하기 위해 다양한 연구가 진행되고 있다. 초기의 연구 중 대부분은 CDC(Centers for Disease Control and Prevention)의 역학 데이터에 의존한 연구였으며, CDC에서 제공하는 데이터는 일주일에 한 번만 갱신돼 실시간 질병 발생 건수를 예측하기 어렵다는 문제점을 갖고 있었다. 하지만 최근 IT 기술의 발전으로 여러 인터넷 매체들이 등장하면서 웹 데이터를 통해 전염병의 발생을 예측하고자 하는 연구가 진행되었고 이 중 우리가 조사한 연구 중 대부분은 단일 웹 데이터를 사용하여 질병을 예측하는 연구였다. 하지만 단일 웹 데이터를 통한 질병 예측은 "COVID-19" 같이 최근에 등장한 전염병에 대해서는 많은 양의 학습 데이터를 수집하기 어려우며 이러한 모델을 통해 정확한 예측을 하기 어렵다는 단점을 가지고 있다. 이에 우리는 전염병 발생을 LSTM 모델을 통해 예측할 때 여러 개의 웹 데이터를 사용하는 모델이 단일 웹 데이터를 사용하는 모델보다 정확도가 더 높음을 실험을 통해 증명하고 전염병 예측에 적절한 모델을 제안하고자 한다. 본 실험에서는 단일 웹 데이터를 사용하는 모델과 우리가 제안하는 모델을 사용하여 "말라리아"와 "유행성이하선염"의 발생을 예측했다. 우리는 2017년 12월 31 일부터 2019년 12월 28일까지 총 104주 분량의 NEWS, SNS, 검색 쿼리 데이터를 수집했는데, 이 중 75주는 학습 데이터로, 29주는 검증 데이터로 사용됐다. 실험 결과 우리가 제안한 모델의 예측 결과와 단일 웹 데이터를 사용한 모델의 예측 결과를 비교했을 때 검증 데이터에 대해서 피어슨 상관계수가 0.94, 0.86로 가장 높았고 RMSE 또한 0.19, 0.07로 가장 낮은 오차를 보여주었다.

웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발 (Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information)

  • 최유지;박도형
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.155-175
    • /
    • 2017
  • 최근 독감 예측이나 당선인 예측, 구매 패턴, 투자 등 다방면에서 웹검색 트래픽 정보. 소셜 네트워크 내용 등 거대한 데이터를 통해 사회적 현상, 소비 패턴을 분석하는 시도가 이전보다 늘어났다. 구글, 네이버, 바이두 등 인터넷 포털 업체들의 웹검색 트래픽 정보 공개 서비스와 함께 웹검색 트래픽 정보를 활용하여 소비자나 사용자와 관련된 연구가 실시되기 시작했다. 웹검색 트래픽 정보를 활용한 사회 현상, 소비 패턴 분석을 연구는 많이 수행되었으나, 그에 비해서 도출된 여행 수요 모델을 토대로 의사결정을 위한 실질적 대책 수립으로 이어지는 연구는 많이 진행되지 않은 실정이다. 관광산업은 상대적으로 많은 고용을 가능하게 하고 외자를 유치하는 등 고부가가치를 창출하여 경제 전체에 선순환 효과를 일으키는 중요한 산업이다. 그 중에서도 국내 입국외래객중 수년간 2위와의 큰 차이로 1위를 차지해왔던 중국 국적의 관광객 '유커' 및 그들이 지출하는 1인당 평균 관광 수지는 한국 경제에 매우 중요한 한 부분이다. 관광 수요의 예측은 효율적인 자원 배분과 합리적인 의사 결정에 있어서 공공부문 및 민간부문 모두 중요하다. 적절한 관광 수요 예측을 통해서 한정된 자원을 더욱 효과적으로 활용하여 더욱 많은 부가가치를 창출하기 위한 것이다. 본 연구는 중국인 인바운드를 예측하는 방법에 있어, 이전보다 더 최신의 트렌드를 즉각적으로 반영하고 개인들의 집합의 관심도가 포함되어 예측 성능이 개선된 방법을 제안한다. 해외여행은 고관여 소비이기 때문에 잠재적 여행객들이 입국하기 전 웹검색을 통해 적극적으로 자신의 여정과 관련된 정보를 취득하기 위한 활동을 한다. 따라서 웹검색 트래픽 수치가 중국인 여행객의 관심정도를 대표할 수 있다고 보았다. 중국인 여행객들이 한국 여행을 준비하는 단계에서 검색할만한 키워드를 선정해 실제 중국인 입국자 수와 상관관계가 있음을 검증하고자 하였다. 중국 웹검색 엔진 시장에서 80%의 점유율을 가지는 중국 최대 웹검색 엔진 '바이두'에서 공개한 웹검색 데이터를 활용하여 그 관심 정도를 대표할 수 있을 것이라 추정했다. 수집에 필요한 키워드의 선정 단계에서는 잠재적 여행객이 여정을 계획하고 구체화하는 단계에서 일반적으로 검색하게 되는 키워드 후보군을 선정하였다. 키워드의 선정에는 중국 국적의 잠재적 여행객 표본과의 인터뷰를 거쳤다. 트래픽 대소 관계 확인 결과에 따라서 최종 선정된 키워드들을 한국여행이라는 주제와 직접적인 연관을 가지는 키워드부터, 간접적인 연관을 가지는 키워드까지 총 세 가지 레벨의 카테고리로 분류하였다. 분류된 카테고리 내의 키워드들은 바이두'가 제공하는 웹검색 트래픽 데이터 제공 서비스 '바이두 인덱스'를 통해 웹검색 트래픽 데이터를 수집했다. 공개된 데이터 페이지 특성을 고려한 웹 크롤러를 직접 설계하여 웹검색 트래픽 데이터를 수집하였고, 분리되어 수집된 변수에는 필요한 변수 변환 과정을 수행했다. 자동화 수집된 웹검색 트래픽 정보들을 투입하여 중국 여행 인바운드에 대한 유의한 영향 관계를 확인하여 중국인 여행객의 한국 인바운드 여행 수요를 예측하는 모형을 개발하고자 하였다. 정책 의사결정 및 관광 경영 의사결정 같은 실무적 활용을 고려하여 각 변수의 영향력을 정량적으로 설명할 수 있고 설득이 명료한 방법인 다중회귀분석방법을 적용해 선형 식을 도출하였다. 수집된 웹검색 트래픽 데이터를 기존 검증된 모형 독립변인들에 추가적으로 투입함으로써 전통적인 독립변인으로만 구성된 연구 모형과 비교하여 가장 뛰어난 성능을 보이는 모형을 확인하였다. 본 연구에서 검증하려는, 웹검색 트래픽으로 대표되는 독립변인을 투입한 최종 도출된 모형을 통해 중국인 관광 수요를 예측할 때 유의한 영향을 끼치는 웹검색 트래픽 변수를 확인할 수 있다. 최적 모형 설명력을 가지는 모형을 기반으로 최종 회귀 식을 만들었고 이를 '유커마이닝' 시스템 내부에 도입하였다. 데이터 분석에서 더 나아가 도출된 모형을 직관적으로 시각화하고, 웹검색 트래픽 정보를 활용하여 도출할 수 있는 인사이트를 함께 보여주는 데이터 분석 기반의 '유커마이닝' 솔루션의 시스템 알고리즘과 UX를 제안하였다. 본 연구가 제안하는 모형과 시스템은 관광수요 예측모형 분야에서 웹검색 트래픽 데이터라는 정보 탐색을 하는 과정에 놓인 개인들의 인터랙티브하고 즉각적인 변수를 활용한 새로운 시도이다. 실무적으로 관련 정책결정자나 관광사, 항공사 등이 활용 가능한 실제적인 가치를 가지고, 정책적으로도 효과적인 관광 정책 수립에 활용될 수 있다.