• Title/Summary/Keyword: Epichlorohydrin(ECH)

검색결과 23건 처리시간 0.022초

Phodosporidium toruloides의 광학선택적 가수분해활성을 이용한 Chiral Epichlorohydrin의 회분식 생산 (Batch Production of Chiral Epichlorohydrin by Enantioselective Hydrolysis Reaction using Rhodosporidium toruloides)

  • 이은열;이재화
    • KSBB Journal
    • /
    • 제19권1호
    • /
    • pp.38-41
    • /
    • 2004
  • 라세믹 ECH 기질에 대한 입체선택적 가수분해 활성을 가진 R. tourloides를 생촉매로 이용하여 광학활성 (R)-ECH를 생산하였다. EH의 입체적선택적 가수분해능에 영향을 주는 실험인자들인 pH, 반응온도, 초기 ECH 농도 등이 초기 가수분해반응속도에 미치는 영향을 분석하고, 최적 회분식 반응조건을 결정하였다. 또한 Tween 20 등의 detergent를 첨가하여 가수분해 반응속도 및 입체선택성을 향상시킬 수 있었다. pH 8, 반응온도 35$^{\circ}C$, 2% (v/v)의 Tween 20이 첨가된 조건에서 약 1.2시간의 반응을 통해 80mM 라세믹 기질로부터 광학순도 100% ee인 (R)-ECH를 12.5%(이론수율 = 50%) 수율로 얻을 수 있다.

키토산 가교처리된 면직물의 태 변화에 관한 연구 - 에피클로로히드린과 키토산 농도의 영향- (A study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics - Effect of Concentration of Epichlorohydrin and Chitosan -)

  • 김민지;박정우;이신희
    • 한국의류산업학회지
    • /
    • 제6권5호
    • /
    • pp.660-666
    • /
    • 2004
  • This article describes the change of hand value of chitosan crosslinked cotton fabrics. The chitosan crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH) as crosslinkins agent, 2% aqueous acetic acid as a solvent of chitosan and ECH, and 20% aqueous sodium hydroxide as a mercerizing agent and crosslinking catalyst. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle, mercerized and crosslinked in NaOH solution, and finally wash and dry. Mechanical and physical properties of the chitosan crosslinked fabric were investigated using Kawabata Evaluation System(KES) and other instruments. Tensile energy and tensile strain were decreased with the increase of the concentration of chitosan. Tensile resilience, compression resilience bending rigidity, bending hysteresis, shear stiffness, shear hysteresis, coefficient of friction, geometrical roughness, compression linearity, compressional energy, and thickness were increased with the increase of the concentration of chitosan. On the other hand, bending rigidity, bending hysteresis, coefficient of friction, geometrical roughness, compressional resilience, and thickness were increased with the increase of the concentration of crosslinking agent(epichlorohydrin).

Glycidyl Azido Copolyetherdiol을 이용한 Polyurethane의 합성과 특성분석 (Synthesis of Glycidyl Azido Copolyetherdiol for Solid Propellant Polyurethane Binder)

  • 신범식;이범재;박영철;황갑성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.231-236
    • /
    • 2008
  • 양이온 개환중합법을 이용하여 Epichlorohydrin(ECH)과 Tetrahydrofuran(THF)을 공중합 하였다. 중합은 1,4-Butandiol 존재 하에 $BF_3THF$를 촉매로 사용하여 잘 제어된 Copolyetherdiol을 합성하였다. 분자량은 [monomer]/[diol]비를 조절하였고, 공중합체 조성은 ECH와 THF의 투입몰비를 변화하여 조절하였다. 합성된 Copolyetherdiol의 Chlorine기는$S_N2$반응을 이용하여 Azide기로 치환하였다. 합성된 고분자를 프리폴리머로 사용하여 경화제인 N-100/IPDI와 경화촉매인 TPB/MA 혼합촉매를 이용하여 Polyurethane을 합성하여 경화거동과 기계적 특성은 비교 분석하였다.

  • PDF

Physical Property and Virtual Sewing Image of Lyocell treated with Epichlorohydrine for the fibrillation control

  • Park, Ji-Yang;Jeon, Dong-Won;Kim, Sin-Hee
    • 패션비즈니스
    • /
    • 제12권6호
    • /
    • pp.46-60
    • /
    • 2008
  • Lyocell is a regenerated cellulosic fiber manufactured by an environmentally friendly process. The major advantages of lyocell are the excellent drape forming property, the genuine bulkiness, smooth surface, and high dry/wet tenacities. However, one drawback of lyocell is its fibrillation property, which would degrade its aesthetic quality and lower the consumer satisfaction. In our previous studies, lyocell was treated with epichlorohydrin, a non-formalin based crosslinker, to reduce its fibrillation tendency. To investigate the changes of physical properties upon ECH-treatment, the hand characteristics of ECH-treated fabric were observed using KES-FB system and the 3D-virtual sewing image of the fabrics were obtained using 3D CAD simulation system in this study. Since epichlorohydrin(ECH) treatment was conducted in the alkaline medium, the weight reduction was observed in all treated lyocell. The treated lyocell became light, smooth and flexible in spite of ECH crosslinker application. LT and RT in tensile property upon the ECH treatment did not change significantly, however, EMT and WT in the tensile property increased. The significant decrease in bending rigidity was resulted in all ECH-treated lyocell, which is the result of the weight loss upon the alkali condition of ECH treatment. The bending rigidity increased again in the ECH 30% treated lyocell, however, the B value is still lower than the original. Therefore, the ECH-treated lyocell would be more stretchable and softer than the original. Shear rigidity was also decreased in all ECH-treated lyocell, which would result in more drape and body fitting when it is made as a garment. The ECH-treated fabric showed the softer smoother surface according to SMD value from KES evaluation. The virtual 3D sewing image of the ECH-treated lyocell did not show a significant change from that of the original except ECH 30% treated lyocell. ECH 30% treated lyocell showed a stiffer and more puckered image than the original.

변성전분과 폴리에틸렌 혼합물의 물성 및 분해성 평가 (Mechanical Properties and Degradability of Modified Starch and Polyethylene Blends)

  • 장시훈;유영선;서종철;박수일
    • 한국포장학회지
    • /
    • 제16권2_3호
    • /
    • pp.59-65
    • /
    • 2010
  • Starch was modified with epichlorohydrin(ECH) to improve the miscibility with LDPE and LLDPE. Native starch or epichlorohydrin treated starch was mixed with grycerol and LDPE/LLDPE resin using a kneader and extruded using a single screw extruder to make pallets. The pallets were compression-molded at 145 into composite boards to evaluate their color, oxygen permeation, mechanical and thermal properties, and degradability under UV irradiation. Sheets with epichlorohydrin treated starch generally showed higher L-value than that of native starch blend sheets. The hunter b-values in both native starch blends and epichlorohydrin treated starch blends increased with Increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. The degradability of blends under UV radiation increased with increasing starch contents in both blend types. The results represents that crosslinking of starch with epichlorohydrin may be a good method to improve miscibility of starch with petroleum-based materials.

  • PDF

키토산 가교처리된 레이온 직물의 역학적특성과 항균성 - 에피클로로히드린과 키토산 농도의 영향 - (The mechanical and antimicrobial properties of chitosan crosslinked rayon fabric - Effect of chitosan and epichlorohydrin(ECH) concentration -)

  • 안정미;김민지;이신희
    • 한국염색가공학회지
    • /
    • 제18권6호
    • /
    • pp.16-24
    • /
    • 2006
  • The purpose of this study is to improve the defects of chitosan crosslinked viscose rayon by ECH and to describe the change of hand of chitosan crosslinked viscose rayon fabrics. The chitosan crosslinked viscose rayon were manufactured by crosslinking process using ECH as crosslinking agent, 2 wt% aqueous acetic acid as a solvent of chitosan and ECH, and 20 wt% aqueous sodium hydroxide as crosslinking catalyst. Viscose rayon were first immersed in the pad bath of the mixed solution of chitosan and ECH, padded up to 100 wt% wet pick-up on weight of fiber(owf), precured on pin frames at $130^{\circ}C$ for 2 minutes, immersed in NaOH solution and finally wash and dry. Antimicrobial properties of the viscose rayon treated with chitosan were measured by the shake flask C.T.M. 0923 test method with staphylococcus aureus(ATCC 6538) as the microorganism. When the concentration of chitosan was increased chitosan crosslinked viscose rayon's LT, WT, B, 2HB and MIU were increased and G, 2HG, SMD, T and $T_m$ were decreased. On the other hand, WT, EM were decreased and RT was increased at $1{\times}10^{-2}M$ ECH. The optimum condition for crosslinking was that ECH concentration was between $1{\times}10^{-2}M\;and\;5{\times}10^{-2}M$. Antimicrobial effects of rayon fabric treated with chitosan was excellent.

키토산 가교 처리된 면직물의 태 변화에 관한 연구(II) - 키토산 농도 및 분자량의 영향 - (A Study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics(II) - Effect of Concentration and Molecular Weight of Chitosan -)

  • 김민지;이신희
    • 한국의류산업학회지
    • /
    • 제7권4호
    • /
    • pp.439-444
    • /
    • 2005
  • This article describes the change in the hand value of chitosan-crosslinked cotton fabrics. The chitosan-crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH), 2% aqueous acetic acid and 20% aqueous sodium hydroxide. It proposed that the crosslinking and mercerizing were performed with the mixture of four different molecular weight chitosan and ECH in a single step. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle roller, pre-dried at $130^{\circ}C$, mercerized and crosslinked in NaOH solution and finally washed and dried. Mechanical and physical properties of the chitosan crosslinked fabric were measured on concentration and molecular weight by Kawabata Evaluation System(KES) and other instruments. As the concentration of chitosan solution increased, LT, WT, B, 2HB were increased. WT, B, 2HB, MIU, SMD, $T_0$, $T_m$ were decreased when chitosan was depolymerized. On the other hand, RT was increased when chitosan was depolymerized.

에폭시수지 생산 공정에서 발생되는 brine 폐수의 전처리를 위한 응집 및 침전 반응의 최적화 연구 (A Study on The Optimization of Pre-treatment for the Brine Wastewater from the Epoxy-resin Process by the Coagulation and Sedimentation Reactions)

  • 조욱상;이은영;강성욱;이장수;진수익
    • 청정기술
    • /
    • 제11권2호
    • /
    • pp.57-67
    • /
    • 2005
  • 에폭시 수지는 ECH(Epichlorohydrin)와 BPA(Bisphenol-A)를 원료로 가성소다 존재 하에 탈수응축 반응을 통해 생성되며 반응 부산물로 소금물이 폐수로 발생되는데 이를 Brine이라 부르며 글리시돌과 같은 에멀젼 상태의 ECH 유도체와 수지성 폴리머를 함유하는 알카리성 폐수이다. 이러한 폐수는 폐수처리 과정에서 반응기 내부와 배관 내벽에 폴리머 입자가 침적 및 응고되어 plugging을 일으키는 등 전체적으로 후처리 공정에서 fouling 현상이 발생되고 있는데 이는 미생물의 분해 활성도를 급격히 떨어뜨려 폐수처리 효율이 낮아지는 문제점을 야기 시키고 있다. 본 연구에서는 무기 응집제와 유기 고분자 응집제를 이용하여 에폭시 수지 생산 공정에서 발생하는 brine 폐수에 존재하는 ECH 유도체와 수지성 폴리머를 반고상 슬러지 형태로 응집 및 침전시킴으로써 fouling 현상을 일으키는 요인을 제거하고자 최적의 응집반응 조건을 도출하였고 경제성 분석 등 이를 실제 공정에 적용할 수 있는 방안을 제시하고자 하였다.

  • PDF

Time-course response of epichlorohydrin on epididymal histopathology in rats

  • Kim, Kang-Hyeon;Shin, In-Sik;Lim, Jeong-Hyeon;Kim, Sung-Hwan;Park, Na-Hyeong;Moon, Changjong;Kim, Sung-Ho;Shin, Dong-Ho;Kim, Jong-Choon
    • 대한수의학회지
    • /
    • 제49권4호
    • /
    • pp.279-284
    • /
    • 2009
  • This research aimed to investigate the time-course effect of epichlorohydrin (ECH) on epididymal histopathology in Sprague-Dawley rats. Twenty-four male rats were randomly assigned to four groups with 6 rats in each group and were administered a single oral dose of ECH (70 mg/kg) or its vehicle. Six animals each were sacrificed on days 0 (control), 1, 2, and 7 after treatment. During the study period, clinical signs, body weights, reproductive organ weights, testicular spermatid count, epididymal sperm count, motility and morphology, and histopathology were examined. No treatmentrelated effects on body weights and reproductive organ weights were noted at any time point. On the contrary, sperm motility decreased slightly on days 1 and 2 after treatment and then decreased significantly on day 7 after treatment. The first signs of histological changes were the appearance of cell debris in the ducts and vacuolization of the epithelial cells observed in the proximal caput epididymis on day 1 after treatment. The incidences and grades of the histological changes including cell debris in the ducts, epithelial vacuolization, oligospermia, and epithelial disruption increased on day 2 and then decreased slightly on day 7 after treatment. These results show that a single oral dose of 70 mg/kg ECH to male rats results in cell debris in the ducts and vacuolization of the epithelial cells in the proximal caput epididymis, followed by reversible oligospermia, epithelial disruption, and decreased sperm motility.

양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구 (Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols)

  • 이재명;설양호;권정옥;진용현;노시태
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.267-276
    • /
    • 2020
  • Oxirane계 단량체의 양이온 개환 공중합반응으로 합성되는 ECH (ephichorohydrin) 기반 copolyol (PECH copolyol)류의 특성에 대한 반응온도, 용매의 종류 및 개시제에 대한 영향을 연구하였다. 공단량체로는 butylene oxide와 hexylene oxide 두 종류의 알킬렌 옥사이드를 사용하였으며, 중합 조건은 methylene chloride (MC) 용매에서 개시제로 diethylene glycol (DEG)를 사용한 조건과 toluene을 용매에서 tripropylene glycol (TPG)를 개시제로 사용한 두 조건으로 진행하였다. 개환 공중합반응에서 active monomer (AM) mechanism 유도를 위해 단량체는 실린지 펌프를 사용해 IMA (increased monomer addition) 방법으로 주입하였고 중합온도는 -5 ℃에서 실행하였다. 합성된 ephichorohydrin (ECH) 기반 copolyol인 PECH copolyol은 치환반응으로 ECH unit를 아지드화하여 glycidyl azide계 에너지 함유 copolyol (GAP copolyol)로 전환하였다. 합성된 아지드화 코폴리올은 용매와 개시제의 변화에 대한 영향은 크지 않았으며, 분자량은 아지드화 반응 후 평균 500 증가함으로써 GAP 코폴리올이 설계한 대로 중합되었음을 확인하였다. DSC 분석으로 copolyol류의 조성비 변화에 따른 유리전이 온도(glass transition temperature, Tg)의 변화를 측정하였을 때, 공단량체의 함량이 증가할수록 알킬 사슬의 길이에 의한 영향으로 Tg와 점도가 모두 감소하는 경향을 보였다. 아지드화 반응과정에서 생성되는 CH3N3의 생성을 원천적으로 방지할 수 있으며, 대규모 공정이 가능할 것으로 기대된다.