• Title/Summary/Keyword: Epicenter location

Search Result 23, Processing Time 0.015 seconds

Microseismic Monitoring for KAERI Underground Research Tunnel (KURT 미소진동 모니터링)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2009
  • The microseismic monitoring system with wide range of frequency has been operating in real time and it is remotely monitored at indoor and on-site for one year. This system was constructed and established in order to secure the safe and effective operation of the KAERI Underground Research Tunnel(KURT). For one year monitoring work, total 14 events were recorded in the vicinity of the KURT, and the majority of events are regarded as ultramicroseismic earthquake and artificial impacts around the tunnel. The major event is the magnitude 3.4 earthquake which was centered around Gongju city, Chungnam Province. It means that there is no significant evidence of high frequency microseismic event, which is associated with fracture initiation and/or propagation in the rock mass and shotcrete. Three components sensor was applied in order to analyze and define the direction of vibration as well as an epicenter of microseismic origin, and also properly designed and installed in a small borehole. This monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an undreground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures.

An Analysis of Intensity Attenuation Characteristics by Physics-based Strong Ground-Motion Simulation (물리적 지진모델링 기반 강지진동 모사를 통한 진도 감쇠 특성 분석)

  • Kim, Su-Kyong;Song, Seok Goo;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.56-67
    • /
    • 2019
  • In this study, we analyzed the intensity attenuation for M 6.0, 6.5, and 7.0 earthquakes using the broadband strong ground motion simulation platform based on the physical seismic modeling developed by the US Southern California Earthquake Center (SCEC). The location of the earthquake was assumed to be near the epicenter of the 2016 M 5.8 Gyeongju earthquake, but two of the representative US regional models provided by the SCEC strong ground motion simulation platform were used for the propagation model. One is the Central and Eastern United States (CEUS) model representing the intraplate region, and the other is the LA Basin model representing the interplate region. Five modeling methodologies are presented in the version 16.5 of the simulation platform, and Song and Exsim models were used in this study. In the analysis, we found that different intensity attenuation patterns can be observed with the same magnitude of earthquakes, especially depending on the region (CEUS vs LA Basin). Given the same magnitude and distance, the instrumental intensity in the CEUS region (intraplate) could be larger by a unit of 2 than that in the LA Basin region (interplate). Given the difference of intensity attenuation patterns observed in the study, it is important to know the regional intensity attenuation characteristics to understand the accurate level of seismic hazard imposed in the Korean Peninsula. This study also shows the level of the uncertainty of intensity attenuation if region specific attenuation characteristics are not considered.

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.