• 제목/요약/키워드: Ephemeris Failure Detection

검색결과 3건 처리시간 0.018초

Orbit Ephemeris Failure Detection in a GNSS Regional Application

  • Ahn, Jongsun;Lee, Young Jae;Won, Dae Hee;Jun, Hyang-Sig;Yeom, Chanhong;Sung, Sangkyung;Lee, Jeong-Oog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.89-101
    • /
    • 2015
  • To satisfy civil aviation requirements using the Global Navigation Satellite System (GNSS), it is important to guarantee system integrity. In this work, we propose a fault detection algorithm for GNSS ephemeris anomalies. The basic principle concerns baseline length estimation with GNSS measurements (pseudorange, broadcasted ephemerides). The estimated baseline length is subtracted from the true baseline length, computed using the exact surveyed ground antenna positions. If this subtracted value differs by more than a given threshold, this indicates that an ephemeris anomaly has been detected. This algorithm is suitable for detecting Type A ephemeris failure, and more advantageous for use with multiple stations with various long baseline vectors. The principles of the algorithm, sensitivity analysis, minimum detectable error (MDE), and protection level derivation are described and we verify the sensitivity analysis and algorithm availability based on real GPS data in Korea. Consequently, this algorithm is appropriate for GNSS regional implementation.

Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석 (Performance Assessment of GBAS Ephemeris Monitor for Wide Faults)

  • 송준솔
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

회전하는 태양전지판에 장착된 태양센서를 이용한 자세오류 감지 (Attitude Error Detection with Sun sensor on a Rotating Solar Array)

  • 오시환
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.27-36
    • /
    • 2014
  • 인공위성은 예측 가능한 데이터를 이용하여 자신의 상태를 스스로 파악하며, 자연적으로 발생할 수 있는 일시적인 문제가 아니거나 오류가 전이되어 더 큰 문제를 발생시킬 수 있다고 판단될 경우를 대비하여 지상국과의 접속이 없는 상태에서도 스스로 고장 관리를 수행할 수 있도록 설계되어 있다. 태양 센서를 이용한 정상상태에서의 자세 오류 감지도 이러한 고장관리 항목 중의 하나로 사용될 수 있다. 본 연구에서는 회전하는 태양전지판에 장착되어 있는 태양 센서 데이터를 이용한 오류 감지 방법을 제안하였다. 태양전지판의 운용 방법에 따라 정상적인 상태에서 발생할 수 있는 태양 센서의 오차를 예측하고 이 예측된 값으로부터 벗어나는 정도를 파악하여 오류를 감지하도록 하였다. 또한, 식구간 존재 시에는 태양센서가 그 출력을 내지 못하므로 오류 감지에 문제가 없도록 보정하였다. 마지막으로 궤도 상 데이터를 이용하여 제안된 방법의 타당성을 검증하였다.