• Title/Summary/Keyword: EphA8

Search Result 13, Processing Time 0.017 seconds

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.

Engineering lacZ Reporter Gene into an ephA8 Bacterial Artificial Chromosome Using a Highly Efficient Bacterial Recombination System

  • Kim, Yu-Jin;Song, Eun-Sook;Choi, Soon-Young;Park, Soo-Chul
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.656-661
    • /
    • 2007
  • In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.

The EphA8 Receptor Phosphorylates and Activates Low Molecular Weight Phosphotyrosine Protein Phosphatase in Vitro

  • Park, Soo-Chul
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.288-293
    • /
    • 2003
  • Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) has been implicated in modulating the EphB1-mediated signaling pathway. In this study, we demonstrated that the EphA8 receptor phosphorylates LMW-PTP in vitro. In addition, we discovered that mixing these two proteins leads to EphA8 dephosphorylation in the absence of phosphatase inhibitors. Finally, we demonstrated that LMW-PTP, modified by the EphA8 autokinase activity, possesses enhanced catalytic activity in vitro. These results suggest that LMW-PTP may also participate in a feedback-control mechanism of the EphA8 receptor autokinase activity in vivo.

The p110${\gamma}$ PI-3 Kinase is Required for the Mechanism by Which the EphA8-induced Neurites are Modulated by Ephrin-A5 Engagement

  • Park, Soo-Chul
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • This study provides evidence that expression of EphA8 receptor in NG108-15 cells results in a substantial increase in the number of neurite-bearing cells. However, the EphA8-induced neurite outgrowth does not require either ephrin-A5 stimulation or ectopic expression of $p110{\gamma}$ PI-3 kinase. In contrast, co-expression of a lipid kinase-inactive $p110{\gamma}$ mutant together with EphA8 causes neurite retraction in the presence of ephrin-A5 stimulation. This effect was not observed in the absence of ephrin-A5 stimulation. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results strongly suggest that $p110{\gamma}$ PI-3 kinase is critically involved in the regulatory process by which ephrin-A5 exerts effects on the EphA8-induced neurite outgrowth.

Identification of WDR7 as a Novel Downstream Target of the EphA8-Odin Signaling Complex

  • Park, Eun-Jeong;Park, Soo-Chul
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Eph receptors and their ephrin ligands have been implicated in a variety of cellular processes such as cellular morphogenesis and motility. Our previous studies demonstrated that Odin, one of the Anks family proteins, functions as a scaffolding protein of the EphA8 signaling pathway leading to modulation of cell migration or axonal outgrowth. Here we show that WDR7 is associated with Odin and that it is possibly implicated in the EphA8 signaling pathway. WD40 repeats present in the COOH-terminal region of WDR7 appear to be crucial for its association with Odin, whereas the binding motif of Odin is located in between ankyrin repeats and PTB domain. Co-immunoprecipitation experiments revealed that association of WDR7 with Odin is enhanced by ephrin ligand treatment, possibly through forming large protein complexes including both EphA8 and ephrin-A5. Consistently, immunofluorescence staining experiments suggested that WDR7 constitute a component of the large protein complexes containing Odin, EphA8 and ephrin-A5. Taken together, our results suggest the WDR7-Odin complexes might be involved in the signaling pathway downstream of the EphA8 receptor.

Identification of EphA7 BAC clone containing a long-range dorsal midline-specific enhancer

  • Kim, Yu-Jin;Park, Soo-Chul
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.113-117
    • /
    • 2011
  • Previous studies suggest that EphA7 plays a critical role in neural tube closure or cortical progenitor apoptosis. In this report, enhancer trap assay was used to modify various EphA7 BAC clones and screen a large genomic region spanning 570 kb downstream of the EphA7 gene. We found that the dorsal midline-specific EphA7 enhancer resides on the 457D20 EphA7 BAC clone and is localized to a 35 kb genomic region in between +345.7 kb to +379.8 kb downstream of the EphA7 transcription start site. Identification of the EphA7 BAC clone containing a long-range dorsal midline enhancer may constitute a useful tool for investigating the biological functions of EphA7 in vivo.

EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury

  • Hong, Ji Young;Shin, Mi Hwa;Chung, Kyung Soo;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Kim, Young Sam;Kim, Se Kyu;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.218-226
    • /
    • 2015
  • Background: Eph receptors and ephrin ligands have several functions including angiogenesis, cell migration, axon guidance, fluid homeostasis, oncogenesis, inflammation and injury repair. The EphA2 receptor potentially mediates the regulation of vascular permeability and inflammation in response to lung injury. Methods: Mice were divided into 3 experimental groups to study the role of EphA2 signaling in the lipopolysaccharide (LPS)-induced lung injury model i.e., IgG+phosphate-buffered saline (PBS) group (IgG instillation before PBS exposure), IgG+LPS group (IgG instillation before LPS exposure) and EphA2 monoclonal antibody (mAb)+LPS group (EphA2 mAb pretreatment before LPS exposure). Results: EphA2 and ephrinA1 were upregulated in LPS-induced lung injury. The lung injury score of the EphA2 mAb+LPS group was lower than that of the IgG+LPS group ($4.30{\pm}2.93$ vs. $11.45{\pm}1.20$, respectively; p=0.004). Cell counts (EphA2 mAb+LPS: $11.33{\times}10^4{\pm}8.84{\times}10^4$ vs. IgG+LPS: $208.0{\times}10^4{\pm}122.6{\times}10^4$; p=0.018) and total protein concentrations (EphA2 mAb+LPS: $0.52{\pm}0.41mg/mL$ vs. IgG+LPS: $1.38{\pm}1.08mg/mL$; p=0.192) were decreased in EphA2 mAb+LPS group, as compared to the IgG+LPS group. In addition, EphA2 antagonism reduced the expression of phospho-p85, phosphoinositide 3-kinase $110{\gamma}$, phospho-Akt, nuclear factor ${\kappa}B$, and proinflammatory cytokines. Conclusion: This results of the study indicated a role for EphA2-ephrinA1 signaling in the pathogenesis of LPS-induced lung injury. Furthermore, EphA2 antagonism inhibits the phosphoinositide 3-kinase-Akt pathway and attenuates inflammation.

Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

  • Song, J.I.;Park, K.H.;Jeon, J.H.;Choi, H.L.;Barroga, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.433-442
    • /
    • 2013
  • This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The $NH_3$ concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to $29.1^{\circ}C$ during summer and 17.9 to $23.1^{\circ}C$ during winter whilst the CPH had a wider temperature variance during summer at 24.7 to $32.3^{\circ}C$. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to $18.2^{\circ}C$. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to housing system during both summer and winter but not of airspeed. The ideal air velocity measurement favored the EPH and therefore can be appropriate for the Korean environment. Further emphasis on its cost effectiveness will be the subject of future investigations.

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.

Study on the Soil Sample Number of Total Petroleum Hydrocarbons Fractionation for Risk Assessment in Contaminated Site (석유계총탄화수소의 위해성평가 시 적정 분획 시료수 결정에 대한 고찰)

  • Jeon, Inhyeong;Kim, Sang Hyun;Chung, Hyeonyong;Jeong, Buyun;Noh, Hoe-Jung;Kim, Hyun-Koo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.11-16
    • /
    • 2019
  • In this study, a reliable number of soil samples for TPH fractionation was investigated in order to perform risk assessment. TPH was fractionated into volatile petroleum hydrocarbons (VPH) with three subgroups and extractable petroleum hydrocarbons (EPH) with four subgroups. At the study site, concentrations of each fraction were determined at 18 sampling points, and the 95% upper confidence limit (UCL) value was used as an exposure concentration of each fraction. And then, 5 sampling points were randomly selected out of the 18 points, and an exposure concentration was calculated. This process was repeated 30 times, and the results were compared statistically. Exposure concentrations of EPH obtained from 18 points were 99.9, 339.1, 27.3, and 85.9 mg/kg for aliphatic $C_9-C_{18}$, $C_{19}-C_{36}$, $C_{37}-C_{40}$, and aromatic $C_{11}-C_{22}$, respectively. The corresponding exposure concentrations obtained from 5 points were 139.8, 462.8, 35.1 and 119.4 mg/kg, which were significantly higher than those from 18 points results (p <0.05). Our results suggest that limited number of samples for TPH fractionation may bias estimation of exposure concentration of TPH fractions. Also, it is recommended that more than 30 samples need to be analyzed for TPH fractionation in performing risk assessment.