• Title/Summary/Keyword: Enzyme-initiated mechanism

Search Result 5, Processing Time 0.021 seconds

A Substrate Serves as a Hydrogen Atom Donor in the Enzyme-Initiated Catalytic Mechanism of Dual Positional Specific Maize Lipoxygenase-1

  • Huon, Thavrak;Jang, Sung-Kuk;Cho, Kyoung-Won;Rakwal, Randeep;Woo, Je-Chang;Kim, Il-Chul;Chi, Seung-Wook;Han, Ok-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.917-923
    • /
    • 2009
  • The maize lipoxgyenase-1 is a non-traditional dual positional specific enzyme and the reaction proceeds via enzyme-initiated catalysis. Bioinformatic analysis indicated that the maize lipoxygenase-1 is structurally more similar to soybean LOX1 than pea LOXN2 in that it has an additional external loop (residues 318-351) in the carboxy-terminal catalytic domain. We analyzed the dependence of product distribution on concentration of linoleic acid and monitored the formation of hydroperoxyoctadecadienoic acid as a function of enzyme concentration. Product distribution was strongly influenced by substrate concentration, such that kinetically-controlled regioisomers were enriched and thermodynamically-controlled regioisomers were depleted at high substrate concentration. Kinetic studies indicated that the formation of hydroperoxyoctadecadienoic acid saturated rapidly in an enzyme concentration-dependent manner, which implied that reactivation by reoxidation of inactive Fe(II) failed to occur. Our results support the previously proposed enzyme-initiated catalytic mechanism of the maize lipoxgyenase-1 and reveals that a substrate molecule serves as a hydrogen atom donor in its enzyme-initiated catalysis.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

Effects of Allergy Related Drugs on Rat Peritioneal Mast Cells in Hyaluronidase Activity and Histamine Release (수종의 알레르기 관련 약물이 흰쥐의 복강내 비만세포에서 Hyaluronidase 및 히스타민 유리에 미치는 영향)

  • Yoo, Shin-Ae;Kim, Ku-Ja;Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.259-272
    • /
    • 1988
  • Type I allergic reaction and it's related clinical manifestations are known to occur by the effects of various chemical mediators. These chemical mediators are released from circulating basophils and tissue mast cells, which become 'sensitized' through the binding of antigens and antibodies of the IgE type to their cell surface receptors. Efforts to elucidate the mechanism of the release of these mediators, especially that of histamine, have been persued for years. The mechanism is not yet clarified at the present time. Recent reports of hyaluronidase, an enzyme known to be involved in the tissue inflammatory process, as possible participant in type I allergic reaction, initiated this study. Relationships between the hyaluronidase activity and histamine release from the sensitized rat peritoneal mast cells were investigated. Also anti-allergic agents, tranilast and disodium cromoglycate, along with known histamine releasers, morphine and compound 48/80, were used to observe the inhibitory and stimulatory effects of these substances on the hyaluronidase activity as well as histamine release from the rat mast cells. The results obtained are summarized as follows: 1) Hyaluronidase activity and histamine release from sensitiaed rat peritoneal mast cells started to increase on the 4th day of postsensitization. Hyaluronidase activity reached it's peak value on the 7th day of postsensitization and that of histamine release on the 14th day of postsensitization. 2) Hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, pre-treated with tranilast revealed significant decrease in comparison with those of non-treated cells. 3) Hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, pre-treated with tranilast, followed by morphine injection, revealed significant increase in comparison with those of tranilast treated cells. 4) In vitro study of hyaluronidase activity and histamine release from un-sensitized rat peritoneal mast cells, using morphine and compound 48/80 as activators, revealed significant increase compared to those of non-activator used cells. 5) In vitro study of hyaluronidase activity and histamine release from un-sensitized rat peritoneal mast cells, pre-treated with tranilast and disodium cromoglycate, using confound 48/80 and morphine as activators revealed significant decrease in comparison with those of tranilast and disodium cromoglycate treated cells. From above results, participation of enzyme hyaluronidase in the process of histamine release from sensitized rat pertioneal mast cells, could be suggested. It was also quite evident that the clinically used anti-allergic agents, tranilast and disodium cromoglycate, have significant inhibitory function on the hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, while morphine significantly increased the hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells.

  • PDF

Effects of Dietary Proteins and Inositol Hexaphosphate on the Preneoplastic Lesions and Antioxidant Enzymes of Hepatocellular Carcinogenesis in Rats (식이 단백질의 종류 및 Inositol Hexaphosphate가 간세포 암화과정에서 전암성 병변의 지표 및 항산화 효소계에 미치는 영향)

  • 김현덕;최혜미
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.2
    • /
    • pp.239-247
    • /
    • 1999
  • Six-week-old Sprague Dawley rats were fed the diets of 20% casein or soy protein. Two weeks after the feeding, hepatocellular chemical carcinogenesis was initiated by diethylnitrosamine(DEN), and promoted by the diet containing 0.01% 2-acetylamino-fluorene(AAF) and two-thirds partial hepatectomy(PH). The animals were sacrificed at 8 weeks after the DEN injection. The area of placetal glutathione S-trnasferase(GST-P) positive foci, the activities of several enzymes in cellualr antioxidant enzyme systems and glucose 6-phosphatase were determined to investigate the mechanism of the anticarcinogenic effect by the dietary proteins. In another set of experiments, the drinking water of rats fed casein was supplemented with 1.5% inositol hexaphosphate(InsP6) to elucidate whether it has the comparable anticancer action of soy protein. The area and number of GST-P positive foci in the soy protein group were significantly(p<0.05) lower than those inthe casein group. The livers of rats fed casein showed moderate fattydegeneration and larger hyperplastic nodules than those of rats fed soy protein. In another set of experiments, the area and number of GST-P positive foci in the rats fed casein supplemented with InsP6 were not significantly different from those in the rats fed casein or soy protein. The lipid peroxidation of rats fed different protein sources showed no significant difference. Glutathione S-transferase(GST) activities were increased significantly(p<0.05) by carcinogen treatment in all dietary groups. Glucose 6-phosphatase(G6Pase) activities were decreased by carcinogen treatment, and hence showed a reverse relationship(r=-0.695, p<0.01) to the GST-P positive foci. Therefore, the activities in the rats fed casein were lower than those in the rats fed soy protein. These results suggest that the soy protein seems to be more anti-carcinogenic than casein by decreasing the preneoplastic lesion and by increasing the membrane stability but inositol hexaphosphate, a component of soy protein, may not be protective against hepatocarcinogenesis.

  • PDF

Antimutagenic Effect of Organic Germanium(GE-132) on the Mutagenicity of Benzo(a)pyrene (Benzo(a)pyrene의 돌연변이원성에 대한 유기게르마늄(GE-132)의 항돌연변이 효과)

  • Lee, Hyo-Min;Chung, Yong;Jung, Ki-Wha;Kim, Jae-Wan;Kwon, Sun-Kyung
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.18-29
    • /
    • 1993
  • This study was initiated to investigate the effective action and mechanism of GE-132 (Carboxyethylgermanium sesquioxide)on benzo(a)pyrene, which have strong carcinogenicity and mutagenicity. To confirm desmutagenic effect (inhibition of metabolic processes of benzo(a)pyrene with S9 Mix or inactivation of the mutagenicity of benzo(a)pyrene metabolites) and antimutagenic effect (inhibition of gene-expression of reverted genes) of GE-132 against benzo(a)pyrene using with Salmonella typhimuyium TA98 Ames test was performed. The revertants in desmutagenicity test were decreased significantly in the combined groups of benzo(a)pyrene and GE-132 than benzo(a)pyrene only, without inhibition the metabolism of benzo(a)pyrene by S9 Mix. The ideal combined groups of benzo(a)pyrene and GE-132 were 10 $\mu{M}$ and 10mg, 20 $\mu{M}$ and 20mg, 100 $\mu{M}$ and 30 mg, respectively. Then, the revertants in antimutagenicity test, which was studied the direct action of GE-132 on the induction of revertant cells by Salmonella typhimurium TA98 and activated benzo(a)pyrene were decreased significantly in the treated groups of GE-132 than no treated groups. The number of revertants of Salmonella typhimurium TA98 were reduced with increasing amounts of GE-132. From the above results, it was found that GE-132 inactivated the mutagenic metabolites of benzo(a)pyrene without inhibition of the enzyme action in the S9 Mix, and GE132 showed antimutagenic effect which have inhibitory action of reverted gene expression.

  • PDF