• 제목/요약/키워드: Enzyme treatment

검색결과 2,690건 처리시간 0.032초

Inhibition of the Biodegradative Threonine Dehydratase from Serratia marcescens by ${\alpha}$-Keto Acids and Their Derivatives

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 1995
  • Biodegradative threonine dehydratase was purified to homogeneity from Serratia marcescens ATCC 25419 by streptomycin sulfate treatment, Sephadex G-200 gel filtration chromatography followed by AMP-Sepharose 4B affinity chromatography. The molecular weight of the purified enzyme was 118,000 by fast protein liquid chromatography using superose 6-HR. The enzyme was determined to be a homotetrameric protein with subunit molecular weights of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was inhibited by ${\alpha}-Keto$ acids and their derivatives such as ${\alpha}-ketobutyrate$, pyruvate, glyoxlyate, and phosphoenol pyruvate, but not by ${\alpha}-aminobutyrate$ and ${\alpha}-hydroxybutyrate$. The inhibition of the enzyme by pyruvate and glyoxylate was observed in the presence of AMP. The inhibitory effect of glyoxylate was decreased at high enzyme concentration, whereas the inhibition by pyruvate was independent of the enzyme concentration. The kinetics of inhibition of the enzyme by pyruvate and glyoxylate revealed a noncompetitive and mixed-type inhibition by the two inhibitors with respect to L-threonine and AMP, respectively.

  • PDF

Purification and Characterization of Streptococcus mutans Cell Wall Hydrolase from Bacillus subtilis YL-1004

  • OHK, SEUNG-HO;YUN-JUNG YOO;DONG-HOON BAI
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.957-963
    • /
    • 2001
  • Bacillus subtilis YL-1004 was isolated from soil for the development of agents to control dental caries. This strain produced an extracellular lytic enzyme that hydrolyzed the Streptococcus mutans cell wall. The lytic enzyme was purified to homogeneity by affinity chromatography and gel permeation chromatography to give a single band on SDS-PAGE and non-denaturing polyacrylamide gel electrophoresis. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography to be 38 kDa and the PI to be 4.3 from isoelectric focusing. Sirty $\%$ of its lytic activity remained after incubation at $50^{\circ}C$ for 30 min, and its optimal temperature was $37^{\circ}C$ . The enzyme showed its highest activity at pH 8.0 and was stable at pHs ranging from 4.0 to 9.0. Treatment with several modifiers showed that a cysteine residue was involved in the active site of the enzyme. This lytic enzyme from Bacillus subtilis YL-1004 exhibited specificity towards Streptococci and also showed autolytic activity on Bacillus subtilis YL-1004.

  • PDF

Cloning, Expression, and Purification of Recombinant Uricase Enzyme from Pseudomonas aeruginosa Ps43 Using Escherichia coli

  • Shaaban, Mona I.;Abdelmegeed, Eman;Ali, Youssif M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.887-892
    • /
    • 2015
  • Uricase is an important microbial enzyme that can be used in the clinical treatment of gout, hyperuricemia, and tumor lysis syndrome. A total of 127 clinical isolates of Pseudomonas aeruginosa were tested for uricase production. A Pseudomonas strain named Ps43 showed the highest level of native uricase enzyme expression. The open reading frame of the uricase enzyme was amplified from Ps43 and cloned into the expression vector pRSET-B. Uricase was expressed using E. coli BL21 (DE3). The ORF was sequenced and assigned GenBank Accession No. KJ718888. The nucleotide sequence analysis was identical to the coding sequence of uricase gene puuDof P. aeruginosa PAO1. We report the successful expression of P. aeruginosa uricase in Escherichia coli. E. coli showed an induced protein with a molecular mass of about 58 kDa that was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. We also established efficient protein purification using the Ni-Sepharose column with activity of the purified enzyme of 2.16 IU and a 2-fold increase in the specific activity of the pure enzyme compared with the crude enzyme.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

과요소산 산화 전분에 의한 고구마 $\beta$-아밀라제의 수식 (Modification of Sweet Potato $\beta$-Amylase with Periodate-Oxidized Soluble Starch)

  • 안룡근;지의상
    • 한국식품영양학회지
    • /
    • 제3권2호
    • /
    • pp.123-132
    • /
    • 1990
  • Sweet potato $\beta$-amylase is a tetrameric enzyme consisting of four identical polypeptide chains with a molecular weight of 5.6$\times$104, though most of the other $\beta$-amylases are monomeric enzymes. But, the relationship between subunit structure and catalytic function of the enzyme is not known. This study was done to know what the function of the subunit structure of the enzyme is. We obtained the monomer from the enzyme by the treatment of SDS, alkali pH buffer and urea. But the monomer had not activity. We tried to prepare the active monomer from the enzyme by the modification with periodate-oxidized soluble starch , In the result, we succeeded in isolating an active monomer as an oxidized soluble starch-conjugated form The active monomer had 57% of the original activity, 13.2% of the sugar and the molecular weight was estimated to be 5.4$\times$104. This results suggest that the tetrameric form of the enzyme is a most stable one and exists in nature, and the subunit structure of the enzyme Plays an important role in stabilization but not catalytic function.

  • PDF

A Study on Salt-fermented Seahorse added with Proteolytic Enzyme (Protamex)

  • LEE, In-Sook;LEE, Min-Ho;JANG, Kyung-Tae
    • 식품보건융합연구
    • /
    • 제6권6호
    • /
    • pp.1-7
    • /
    • 2020
  • We compared the fermentation of 0 to 4 weeks by manufacturing a rapid low salt-fermented seahorse with a commercial Protamex added to the functional food, Hippocampus abdominalis. We studied amino acid composition, content and major amino acids related to flavor during the fermentation process of salt-fermented seahorse. In the enzyme-free group, it showed little change in the content of non-protein nitrogenous compounds, the content of amino acids and degree of hydrolysis. The Protamex enzyme treatment group was rapidly hydrolyzed in one week of ripening, resulting in increased non-protein nitrogenous compounds content, amino acid content and degree of hydrolysis, and minimal changes in the four weeks. The total amino acid contents ratio showed the highest content of glutamic acid in the enzyme additive group, glycine, alanine, which indicates sweet taste, and serine, the content of glycine, alanine, serine, and lysine, indicating sweet taste, has increased significantly over the enzyme-free group. Twenty species of free amino acid in the four-week of salt-fermented seahorse were detected. It detected 43.0% (6 species) in the enzyme-free group and 63.96% (7 species) in the enzyme additive group.

Pectinase 처리가 복분자 과즙의 추출 수율 향상과 알코올 발효 중 이화학적 특성에 미치는 영향 (Effect of Pectinase Treatment on the Extraction Yield Improvement from Rubus coreanus Juice and Physicochemical Characteristics during Alcohol Fermentation)

  • 정은정;김형은;신동화;김용석
    • 한국식품저장유통학회지
    • /
    • 제14권6호
    • /
    • pp.702-708
    • /
    • 2007
  • Pectinase 처리가 복분자 과즙의 추출 수율에 미치는 영향과 알코올 발효 중 이화학적 변화에 대하여 조사하였다. Pectinex 100L 처리(500 ppm, 30분)에 의해 복분자 과즙의 추출 수율은 대조구보다 8.60%가 증가되었다. 설탕 첨가에 의해 $24^{\circ}Brix$에서 발효를 시작한 처리구(24B-group)와 $8^{\circ}Brix$에서 발효를 시작하고 발효 4일 후에 설탕 16%를 첨가한 처리구(8B-group)의 고형분 함량은 발효 10일 후에 각각 $8.2{\sim}8.3%$$7.7{\sim}8.0%$로 감소하였으나 Pectinex 100L 처리에 의한 유의적 차이는 관찰되지 않았다. Pectinex 100L 처리구의 초기 적정산도는 $1.18{\sim}1.22%$로서 대조구(1.02%)보다 약간 높았다. 발효 초기에 복분자 과즙의 명도($L^*$)와 황색도($b^*$)는 효소처리에 의해 감소하였으나 적색도($a^*$)는 증가하였다. 대조구와 효소처리구 사이의 색차(${\Delta}E^*$)는 발효기간에 따라 점차 감소하였다. 발효 10일 후 24B-group과 8B-group의 알코올 함량은 각각 $16.01{\sim}16.22%$$13.29{\sim}13.52%$ 이었으며, 메탄올 함량은 각각 $0.359{\sim}0.404$ ppm과 $0.520{\sim}0.604$ ppm을 나타내어 법적 기준에 적합하였다.

뮤코다당증의 장기 치료 효과와 한계점 극복을 위한 노력

  • 손영배
    • 대한유전성대사질환학회지
    • /
    • 제14권1호
    • /
    • pp.29-36
    • /
    • 2014
  • Mucopolysaccharidoses (MPSs) are a group of rare inherited metabolic diseases caused by deficiency of lysosomal enzymes. MPSs are clinically heterogeneous and characterized by progressive deterioration in visceral, skeletal and neurological functions. The aim of this article is to review the treatment of MPSs, the unmet needs of current treatments and vision for the future including recent clinical trials. Until recently, supportive care was the only option available for the management of MPSs. Hematopoietic stem cell transplantation (HSCT), another potentially curative treatment, is not routinely advocated in clinical practice due to its high risk profile and lack of evidence for efficacy. From the early 2000s, enzyme replacement therapy (ERT) was approved and available for the treatment of MPS I, II and VI. ERT is effective for the treatment of many somatic symptoms, particularly walking ability and respiratory function, and remains the mainstay of MPS treatment. However, no benefit was found in the neurological symptoms because the enzymes do not readily cross the blood-brain barrier (BBB). In recent years, intrathecal (IT) ERT, substrate reduction therapy (SRT) and gene therapy have been rapidly gaining greater recognition as potential therapeutic avenues. Although still under investigation, IT ERT, SRT and gene therapy are promising MPS treatments that may prevent the neurodegeneration not improved by ERT.

우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향 (Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes)

  • 신한섭;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제36권1호
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.

효소처리 병풀(Centella asiatica)의 이화학적 품질 변화 및 이를 이용한 잼의 제조 (Physicochemical Quality Change of Enzyme-Treated Centella asiatica and Preparation of Jam using Enzyme-Treated Centella asiatica)

  • 이경행;주가영;김채영;한기정;장다빈;윤지혜;유광원;배윤정
    • 한국식품영양학회지
    • /
    • 제34권6호
    • /
    • pp.612-620
    • /
    • 2021
  • To increase the utilization of Centella asiatica (CA), enzymes such as cellulase and pectinase were added and the physicochemical properties of the treated CA were analyzed. In addition, apple-CA jam was prepared using the enzyme-treated CA, which had the best antioxidant properties, and the physicochemical and sensory qualities of the jam were measured. There was a high content of ascorbic acid, polyphenols, flavonoids, reducing sugar, amino acid, minerals and DPPH radical scavenging activity in the enzyme-treated group. The antioxidant component and activity in the jam prepared by adding enzyme-treated CA increased with an increase in the amount of enzyme-treated CA. In the soluble solids, the higher the amount of enzyme-treated CA, the higher the value, but there was no significant difference in pH. The sensory evaluation of the jam, in particular the taste, showed that the highest preference was observed when the enzyme-treated CA was added in the range of 5.0~6.7%, and the control group showed the lowest preference. There was no significant difference in flavor and spreadability among the treatment groups, however, the control group showed the highest color preference. In the overall acceptability, when 5.0% of enzyme-treated CA was added, the highest acceptability was shown.