• Title/Summary/Keyword: Enzyme regulation

Search Result 522, Processing Time 0.023 seconds

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Isolation and properties of protease Pi in escherichia coli (대장균 세포내 단백질 분해효소, protease Pi의 정제와 특성)

  • 이영섭;곽태환;임정빈;정진하
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 1986
  • A periplasmic endoprotease, named protease Pi, was purified to homogeneity from Escherkchia coli by conventional procedure with insulin as substrate. This enzyme degrades insulin and glucagon to trichloroacetic acid-soluble meterials, but shows little or no hydrolysis of bovine serum albumin, casein or globin. Its molecular weight was 110, 000 when determined by gel filtration on Sephacryl S-300 and was 105, 000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be single polypeptide. This snzyme is metalloprotease, since it is completely inhibited by o-phenanthroline and can be activated by addition of divalent metal cations, such as $Mg^{2+}\;and\;Co^{2+}$. It is destinct from protease Ci, a cytoplasmic insulin degrading enzyme, since protease Pi is localized to the periplasm. Since protease Pi selectively degrades GTP cyclohydrolase I, it appears to play a role in the regulation of pteridine biosynthesis.

  • PDF

독성물질 대사효소 조절기전에 관한 연구

  • 윤여표;홍연탁;김부영
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.54-54
    • /
    • 1992
  • 약물, hormone, 독성물질등의 대사능과 발암 가능성등이 간장 장해시 및 ketosis시에 달라지는 원인과 기전, 독성물질 대사효소의 변동과 그 작용기전을 규명하고자, 대표적인 간장장해 물질인 carbon tetrachloride를 rat에 투여하여 간장 장해를 일으키고, 당뇨병, starvation, high-fat diet처리하여 ketosls상태를 만든 후에, specific cytochrome P45O polyclonal antibodies와 cDNA probes를 사용하여, enzyme activitieg, Western immunoblot analysis와 mRNA Northern blot analysis 등을 실험하여, 간장 장해와 ketosis시 cytochrome P45O의 변동과 그 작용기전, regulation을 규명하고자 하였다. 실험 결과, $CCl_4$투여후 P450IIE enzyme (aniline hydroxylase) 활성이 시간 의존적으로 급격히 떨어졌고, P450IIE protein양이 똑같은 방식으로 감소되었으나 mRNA level은 변화가 없었다. $CCl_4$에 의해서 P450IIE는 protein의 특이적인 파괴에 의한 post-translational reduction됨을 알 수 있었다. 반면에 당뇨병, starvation, high-fat diet등 ketosis시에는 P450IIE 효소활성이 2-3배 증가되었고, P450IIE protein양도 같은 수준으로 증가되었으며, mRNA도 증가 되었다. Ketosis시에는 P450IIE가 pretranslational activation됨을 알 수 있었다.

  • PDF

Wogonin, a flavone from Scutellaria radix, inhibits nitric oxide production from RAW 264.7 cells

  • Kim, Hee-Kee;Cheun, Bong-Sun;Kim, Young-Ha;Kim, Sung-Yong;Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.196-196
    • /
    • 1998
  • Nitric oxide is involved in various physiological processes. Among isoforms of nitric oxide synthase, iNOS is partly responsible for inflammation and septic shock. During our continual search for anti-inflammatory flavonoids, we have found that flavonoids, especially flavones, possessed the inihibitory activity of NO production by iNOS from LPS-activated RAW 264.7 cell. In this study, flavonoids from Scutellaria radix were investigated for their inhibitory activity of nitric oxide production. It was found that wogonin, among tested flavonoids including baicalein, oroxylin A, skullcapflavone II, showed the strongest inhibition of nitric oxide production (IC$\sub$50/ = 17 uM). And this inhibition was, at least partly, due to down-regulation of iNOS enzyme induction, not due to direct inhibition of iNOS enzyme activity.

  • PDF

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Structural insights showing how arginine is able to be glycosylated by pathogenic effector proteins

  • Park, Jun Bae;Yoo, Youngki;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.609-610
    • /
    • 2018
  • Glycosylation is one form of protein modification and plays a key role in protein stability, function, signaling regulation and even cancer. NleB and SseK are bacterial effector proteins and possess glycosyltransferase activity, even though they have different substrate preferences. NleB/SseKs transfer the GlcNAc sugar to an arginine residue of host proteins, leading to reduced $NF-{\kappa}B-dependent$ responses. By combining X-ray crystallography, NMR, molecular dynamics, enzyme kinetic assays and in vivo experiments, we demonstrated that a conserved HEN (His-Glu-Asn) motif in the active site plays a key role in enzyme catalysis and virulence. The lid-domain regulates the opening and closing of the active site and the HLH domain determines the substrate specificity. Our findings provide evidence for the enzymatic mechanism by which arginine can be glycosylated by SseK/NleB enzymes.

Promoter Methylation and Expression of CYP1A2 in Dielhylnitrosamine-induced Mice liver Tumors (Diethylnitrosamine에 의하여 유발된 마우스 간 종양의 CYP1A2 메틸화와 발현)

  • Jin, Bo-Hwan;Oh, Sae-Jin;Ryu, Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.3
    • /
    • pp.86-88
    • /
    • 2006
  • Cytochrome P450 1A2 (CYP1A2) is a xenobiotic metabolizing enzyme that is tissue-specifically expressed in the mammalian liver. In this study, the extent of CYP1A2 promoter methylation was analyzed to determine its potential role in the regulation of CYP1A2 in diethylnitrosamine (DEN)-induced mouse liver tumors. CYP1A2 mRNA was under-expressed about three fold in DEN-induced liver tumors compared to age-matched control livers. The CYP1A2 promoter was hypermethylated in DEN-induced liver tumors compared to controls, especially in a promoter domain close to the coding region. These results suggest that promoter methylation is involved in the regulation of CYP1A2 in mouse liver tumors.

  • PDF

Genetic regulation of glutamate and glutamine biosynthesis in Corynebacterium glutamicum

  • Kim, In-Ju;Min, Kyung-Hee;Lee, Sae-Bae
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.517.2-517
    • /
    • 1986
  • The regulation of 3 ammonia assimilatory enzymes GDH(glutamate dehydrogenase), GS(glutamine synthetase) and GOGAT (glutamate synthase), have been examined in C. glutamicum for the biosynthesis of glutamate and glutmine. The cell free extracts of 3 kinds of arg, his and trp auxotrophs were investigated the activities of -ketoglutarate dehydrogenase, GDH, GS, and GOGAT on the media cultured with nitrogen excess and limiting conditions. Trp and his howed higher level of glutamate and glutamine than that of parental strain. The inhibition of GS activities by ADP suggested that GS is regulated by energy charge in C. glutamicum. The results with his, trp, glyc, ala, ser, and GMP implied that a system of feedback inhibition were effective. Three enzyme biosynthesis is repressed by nitrogen sources such as trp, pro, glyc, ala, ser and tyrosine.

  • PDF

Deubiquitinase USP35 as a novel mitotic regulator via maintenance of Aurora B stability

  • Park, Jinyoung;Song, Eun Joo
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.261-262
    • /
    • 2018
  • Aurora B is an important kinase involved in dynamic cellular events in mitosis. Aurora B activity is controlled by several post-translational modifications (PTMs). Among them, E3 ubiquitin ligase-mediated ubiquitination plays crucial roles in controlling the relocation and degradation of Aurora B. Aurora B, ubiquitinated by different E3 ligases, moves to the exact site for its mitotic function during metaphase-anaphase transition and is then degraded for cell cycle progression at the end of mitosis. However, how the stability of Aurora B is maintained until its degradation has been poorly understood. Recently, we have found that USP35 acts as a deubiquitinating enzyme (DUB) for Aurora B and affects its stability during cell division, thus being involved in the regulation of mitosis. In this review, we discuss the USP35-mediated deubiquitination of Aurora B and the regulation of mitotic progression by USP35.

Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum (Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.552-555
    • /
    • 1989
  • A 150-fold purified preparation of NADPH-specific glutamate dehydrogenase of Corynebacterium glutamicum (1) was used for the determination of kinetic parameters of the substrates, NADPH, NH$_4$Cl, and $\alpha$-ketoglutarate in the direction of glutamate synthesis. The kinetic constants determined from this study suggest a biosynthetic role for the enzyme, Based on the analysis of the result derived from initial velocity, the reaction mechanism was postulated to be ordered addition with NADPH as a first substrate to bind in the forward direction. Of the several metabolites tested for a possible function in the regulation of glutamate dehydrogenase activity, only malate and citrate were appeared to have an appreciable influence on the enzyme, Potassium chloride showed to be the most effective for the enzyme activity.

  • PDF