• Title/Summary/Keyword: Enzyme regulation

Search Result 523, Processing Time 0.026 seconds

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jin, Chung
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.217-222
    • /
    • 2018
  • Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells

  • Zandieh, Zahra;Amjadi, Fatemehsadat;Vakilian, Haghighat;Aflatoonian, Khashayar;Amirchaghmaghi, Elham;Fazeli, Alireza;Aflatoonian, Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.4
    • /
    • pp.154-162
    • /
    • 2018
  • Objective: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-${\beta}$ estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OEE6/E7 cell line.

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

The Treatment Effect of Ulcerative Colitis of Supercritical Heat-Treated Radish Extracts

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • With the recent rapid improvement in the standards of life and westernization of dietary lifestyles, the consumption of high-calorie diets such as high-fat and high-protein red meat and instant foods has increased, while less vegetables containing dietary fiber are consumed. In addition to that, stress, erroneous dietary behaviors, and contaminated environments are linked to the risk of developing ulcerative colitis, which is on the rise. Another cause of ulcerative colitis is that involve laxative abuse, including repeated, frequent use of laxatives, and include such conditions as deteriorated bowel function, irritable bowel syndrome, diarrhea, intestinal inflammation, etc. The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of antioxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells (상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구)

  • Lee, Ki Jeon;Kim, Bok Kyu;Kil, Ki Jung
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.

Anti-inflammatory Effects of Ethanol Extract of Various Korean Compositae Herbs in LPS-induced RAW 264.7 Macrophages

  • Seo, Min-gyu;Kang, Yun-Mi;Chung, Kyung-Sook;Cheon, Se-Yun;Park, Jong Hyuk;Lee, Young-Cheol;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • Objective : This study was designed to evaluate candidate materials as anti-inflammation agent from extracts of various Korean Compositae herbs in Hwaak mountain. Among Korea medicinal herbs, Ainsliaea acerifolia (AA) belongs to the Compositae family, has been used for the treatment of rheumatic arthritis. However, AA has not been previously reported to have an anti-inflammatory effect. Therefore, we investigated the anti-inflammatory effects of AA and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods : Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in RAW 264.7 macrophages. Nitric oxide (NO) was measured with Griess reagent and pro-inflammatory cytokines were detected by enzyme immunoassay (EIA) kits in LPS-stimulated RAW 264.7 macrophages. Protein expressions of inducible nitric oxide synthase, and cyclooxygenase-2 (COX-2) and p65 subunit of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) were determined by Western blot analysis. Results : Among 8 extracts of Korean Compositae herbs tested, AA showed the inhibition of NO production without cytotoxicity. Consistent with the observation, AA reduced the expression levels of iNOS and COX-2 proteins in LPS-simulated RAW 264.7 macrophages in dose-dependent manner. In addition, AA inhibited the productions of $TNF-{\alpha}$ and IL-6 in LPS-simulated RAW 264.7 macrophages. However, AA did not inhibit activation of p65 $NF-{\kappa}B$ in LPS-simulated RAW 264.7 macrophages. Conclusion : These results suggest that down-regulation of iNOS, COX-2 protein expression and $TNF-{\alpha}$ and IL-6 production by AA are responsible for its anti-inflammatory effects.

Cell-Surface Loss of Constitutive Activating and Inactivating Mutants of Eel Luteinizing Hormone Receptors

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.225-234
    • /
    • 2021
  • The present study aimed to investigate the mechanism of cell surface receptor loss by two constitutively activating mutants (designated L469R, and D590Y) and two inactivating mutants (D417N and Y558F) of the luteinizing hormone receptor (LHR) in the Japanese eel Anguilla japonica, known to naturally occur in human LHR transmembrane domains. We investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in HEK 293 cells. The expression level of wild-type eel LHR was considered to be 100%, and the expression levels of L469R and D417N were 97% and 101%, respectively, whereas the expression levels of D590Y and Y558F slightly increased to approximately 110% and 106%, respectively. The constitutively activating mutants L469R and D590Y exhibited a decrease in cell surface loss in a manner similar to that of wild-type eel LHR. The rates of loss of cell surface agonist-receptor complexes were observed to be very rapid (2.6-6.2 min) in both the wild-type eel LHR and activating mutants. However, cell surface receptor loss in the cells expressing inactivating mutants D417N and Y558F was slightly observed in the cells expressing inactivating mutants D417N and Y558F, despite treatment with a high concentration of agonist. These results provide important information on LHR function in fish and the regulation of mutations of highly conserved amino acids in glycoprotein hormone receptors.