Granular maize starch was treated with Thermus scotoductus 4-${\alpha}$-glucanotransferase (${\alpha}$-GTase), and its physicochemical properties were determined. The gelatinization and pasting temperatures of ${\alpha}$-GTase-modified starch were decreased by higher enzyme concentrations. ${\alpha}$-GTase treatment lowered the peak, setback, and [mal viscosity of the starch. At a higher level of enzyme treatment, the melting peak of the amylose-lipid complex was undetectable on the DSC thermogram. Also, ${\alpha}$-GTase-modified starch showed a slower retrogradation rate. The enzyme treatment changed the dynamic rheological properties of the starch, leading to decreases in its elastic (G') and viscous (G") moduli. ${\alpha}$-GTase-modified starch showed more liquid-like characteristics, whereas normal maize starch was more elastic and solid-like. Gel permeation chromatography of modified starch showed that amylose was degraded, and a low molecular-weight fraction with $M_w$ of $1.1{\times}10^5$ was produced. Branch chain-length (BCL) distribution of modified starch showed increases in BCL (DP>20), which could result from the glucans degraded from amylose molecules transferred to the branch chains of amylopectin by inter-/intra-molecular transglycosylation of ${\alpha}$-GTase. These new physicochemical functionalities of the modified starch produced by ${\alpha}$-GTase treatment are applicable to starch-based products in various industries.
Ammayappan, L.;Moses, J. Jeyakodi;Senthil, K. Asok;Raja, A.S.M.;Jimmy, Lam K.C.
한국염색가공학회지
/
제23권1호
/
pp.1-10
/
2011
Research information related to application of enzyme as pretreatment and subsequent functional finishing on wool blended textiles for imparting multi-functional properties is still scanty. Yarn-blended wool/cotton fabric was pretreated with both a cellulase (Bactosol-CA) or a protease (Savinase-16.0LEx) in individual, subsequently finished with Synthappret-BAP and ${\beta}$-cyclodextrin based combination to impart anti-shrink, anti-microbial, softening and anti-crease properties. The performance of the finished fabrics depended on type of finishing combinations applied rather than enzyme pretreatment. Savinase pretreatment followed by Synthappret+Ceraperm-MW combination finishing impart both anti-shrink property as well as softening, while Bactosol pretreatment followed by ${\beta}$-cyclodextrin and sanitize combination finishing impart antimicrobial activity as well as anti-shrink finish to the wool/cotton blend fabric.
Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.
Properties of a protease purified from Neungee[Sarcodon aspratus(Berk, ) S. Ito] have been investigated. The enzyme displays a glycosylated serine protease. The enzyme is able to hydrolyze alanine glycine methionine glutamine and cysteine of N-CBZ and N-t-BOC-L-amino acid derivatibes relatively strongly but splits valine proline and isoleucine derivatives with low affinity which means the enzyme has the broad substrate spectrum toward the amino acids. Interestingly the enzyme was inhibited by bromelain inhibitor. That is the active site environ-ment of the enzyme is believed to be similar to that of bromelain However peptide mapping studies show that the two enzymes have distinct different cleavage sites.
Textile wet-processing industry usually five rise to environmental pollution problems caused by using chemical substance. The objective of this study is to apply enzymes for wool and reduce the environmental problems. Three commercial protein degradation enzymes and a cellulose degradation enzyme as a reference were treated to prevent the shrinkage of wool fabric on laundering. Shrink resistant effects used change with the kinds of enzyme, the amount of enzyme, assistant chemicals, and the pre-treatment condition of wool fabric. When pre-treated with corona before enzyme treatment under ultrasonic condition, the weight loss was increased and strength was decreased and elongation was increased. Both corona pre-treatment and the addition of $Na_2SO_4$ also decreased shrinkage of wool fabrics on laundering. The existence of assistant chemicals increased alkali solubility of wool fabrics.
Old newspaper was deinked using commercial cellulolytic enzymes and a surfactant complex at low alkalinity. The properties of the deinked pulp(DIP) were evaluated and the suspended solids content, cationic demand, turbidity, and chemical oxygen demand(COD) of the process water were measured. The results can summarized as follows, 1. The brightness and yield of the DIP were improved using enzymatic surfactant complex deinking. 2. The amount of foaming during deinking with the enzyme surfactant complex was higher than that with synthetic surfactant deinking. However, it was not sufficient to cause process problem. 3. The pH and turbidity of the white water from deinking with the enzyme surfactant complex were similar to those of the white water from surfactant deinking. 4. The suspended solids content, cationic demand, and COD of the white water from deinking with the enzyme surfactant complex were improved compared to those of the white water from surfactant deinking.
A bacterial strain KN, which highly produced a protease, was isolated from several soil samples and identified to to belong to the genus Bacillus. We selected mutant strain Bacillus sp. KN103N, which was hyperproducer of protease and was resistant to D-cyclowerine, from the strain KN by several steps of mutagenesis. Neutral protease productivity of mutant strain KN103N was about 55 times as much as that of the original strain KN. The optimum pH and temperature for the enzyme activity were 7.0 and 50$^{\circ}C$, respectively and the enzyme was relatively stable at pH6.0~8.0 and below 40$^{\circ}C$. The enzyme was inactivated by EDTA, but not by DFP. These results indicate that the enzyme from Bacillus sp. KN103N was a neutral (metallo-) protease.
Many enzymes require the participation of readily dissociable coenzymes as NAD for thir catalytic activities. The continuous utilization of the enzymes requires the retention and regeneration of the coenzymes. For this purpose, several kinds of macromolecular NAD derivatives have been prepared by covalently attaching NAD to watersoluble polymers. We have prepared poly (ethylene glycol)-bound NAD (PEG-NAD) by coupling N$\^$6/-(2-carboxyethyl)-NAD to one terminal of ${\gamma}$$\omega$-diaminoly (ethylene glycol) (Mr 3000) with water-soluble carbodiimide. PED-NAD thus obtained has one NAD moiety located at a terminal of the linear, flexible and hydrophilic chain of poly (ethylene glycol). PED-NAD has good coenzyme activity for various dehydrogenases and is applicable in a continuous enzyme reactor. To use these macromolecular NAD derivatives in an enzyme reactor, it si necessary to understand the behavior of the system in which the reactions of dehydrogenases are coupled by the recycling of the NAD derivative. We investigated the kinetic properties of a continuous enzyme reactor containing lactate dehydrogenase, alcohol dehydrogenase and PEG-NAD. The steady-state behavior of the enzyme reactor is explained by a simple kinetic model.
Quinone reductase was purified to electrophoretic homogeneity from bovine liver by using ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration chromatography. The enzyme utilized either NADH or NADPH as the electron donor. The optimum pH of the enzyme was pH 8.5, and the activity of the enzyme was greatly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, dicumarol and cibacron blue 3GA. The enzyme catalyzed the reduction of several quinones and other artificial electron acceptors. Furthermore, the enzyme catalyzed NAD(P)H-dependent reduction of azobenzene or 4-nitroso-N,N-dimethylaniline. The apparent $K_m$ for 1,4-benzoquinone, azobenzene, and 4-nitroso-N,N-dimethylaniline was 1.64mM, 0.524mM and 0.225mM, respectively. The reduction of azobenzene or 4-nitroso-N,N-dimethylaniline by quinone reductase was strongly inhibited by dicumarol or cibacron blue 3GA, potent inhibitors of quinone reductase.
Micrococcus luteus purine nucleoside phosphorylase (PNP) has been purified and characterized. The physical and kinetic properties have been described previously. Chemical modification of the enzyme was attempted to gain insight on the active site. The enzyme was inactivated in a time-dependent manner by the arginine- specific modifying reagent phenylglyoxal. There was a linear relationship between the observed rate of inactivation and the phenylglyoxal concentration. At 30 $^{\circ}C$ the bimolecular rate constant for the modification was 0.015 $min^{-1}mM^{-1}$ in 50 mM $NaHCO_3$ buffer, pH 7.5. The plot of logk versus log phenylglyoxal concentration was a strainght line with a slope value of 0.9, indicating that modification of one arginine residue was needed to inactivate the enzyme. Preincubation with saturated solutions of substrates protected the enzyme from inhibition of phenylglyoxal, indicating that reactions with phenylglyoxal were directed at arginyl residues essential for the catalytic functioning of the enzyme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.