• Title/Summary/Keyword: Enzyme kinetics

Search Result 224, Processing Time 0.071 seconds

고구마 Polyphenol Oxidase의 정제 및 특성 (Purification and Characterization of Polyphenol Oxidase in Sweet Potato (Ipomoea batatas))

  • 정수자
    • 한국식품영양과학회지
    • /
    • 제17권4호
    • /
    • pp.348-357
    • /
    • 1988
  • 갈변반응에 관여하는 polyphenol oxidase(PPO : EC 1.10.3.1)를 한국산 고구마(Ipomoea batatas, val : Hong-mi)로부터 추출하여 ammoniun sulfate 분획 및 DEAE-cellulose column chromatography법에 의하여 정제한 결과, 효소활동도는 23.1배였으며 enzyme activity 수율은 41.5%이었다. 이 효소는 일반 전기 영동법에 의하여 8개의 isozymes 으로, 또한 isolectric focusing에 의하여 pI가 각각 다른 12개의 isozymes으로 분리되었고 그 pI의 범위는 3.2-9.6이었으며, Isoelectric focusing에 의하여 분리된 각 isozyme의 specific activity는 6,000-46,700U/mg protein의 범위에 있었다. 고구마 중의 PPO는 $65^{\circ}C$이하에서는 안정하였으며 $65^{\circ}C$ 에서는 1분 가열에 의하여 약 50%의 효소활성이 상실되었고, pH optimum은 6.0-6.5이었다. o-diphenol이 이 효소의 가장 좋은 기질로서, 이 효소는 o-diphenolase임이 확인되었고, catechol에 대한 Km치는 6.7mM로 나타났다. 또한 이 효소에 대한 저해작용은 dithiothreitol, cysteine 및 ascorbic acid 순으로 크게 나타났다.

  • PDF

Improved Production of Live Cells of Lactobacillus rhamnosus by Continuous Cultivation using Glucose-yeast Extract Medium

  • Ling Liew Siew;Mohamad Rosfarizan;Rahim Raha Abdul;Wan Ho Yin;Ariff Arbakariya Bin
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.439-446
    • /
    • 2006
  • In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates $(0.05 h^{-1}\;to\;0.40h^{-1})$ using a 2L stirred tank fermenter with a working volume of 600ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, ${\mu}_{max}$, was estimated at $0.40h^{-1}$I, and the Monod cell growth saturation constant, Ks, at approximately 0.25g/L. Maximum cell viability $(1.3{\times}10^{10}CFU/ml)$ was achieved in the dilution rate range of $D=0.28h^{-1}\;to\;0.35h^{-1}$. Both maximum viable cell yield and productivity were achieved at $D=0.35h^{-1}$. The continuous cultivation of L. rhamnosus at $D=0.35h^{-1}$ resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.

Recombinant Cyanide Hydratases에 의한 시안화물 분해 (Cyanide Degradation by Two Recombinant Cyanide Hydratases)

  • 권성현;조대철
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1287-1291
    • /
    • 2009
  • 시안화물을 포름아미드로 변환시키는 nitrilase의 일종인 시안 수화효소 (cyanide hydratase, CHT) 를 진균류인 Neurospora crassa 와 Aspergillus nidulans로부터 유전자 조작을 통하여 His에 태그 또는 언태그된 형태로 대장균에 형질변환시켜 발현하였다. 발현된 효소를 고정 metal affinity chromatography로 정제하였다. 정제된 효소들의 pH 안정성, 동력학적 매개변수의 값을 검토하였다. 실험 결과 N. crassa 의 CHT가 50% 정도 더 넓은 pH 안정 범위를 가졌고 3배 가량 turnover rate도 높았다. 반면 A. nidulans CHT의 Km 값 (효소포화 용량)이 N. crassa CHT보다 더 크게 나타났다. 두 진균류에서 CHT의 유도발현은 질소성분과 상관없이 KCN에 의해 가능하였으며, 생분해 실험결과 N. crassa CHT에 의해 최대 82%/h의 시안분해가 가능하였다.

The Catalytic Role of the W573 in the Mobile Loop of Recombinant Acetohydroxyacid Synthase from Tobacco

  • Karim, Masud;Shim, Mi-Young;Kim, Jeong-Mok;Choe, Gyeong-Jae;Kim, Jung-Rim;Choi, Jung-Do;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.549-555
    • /
    • 2006
  • Acetohydroxyacid synthase (AHAS, EC 2.2.1.6 also referred to as acetolactate synthase) catalyzes the first common step in the metabolic pathway leading to biosynthesis of the branched-chain amino acids in plants and microorganisms. Due to its presence in plants, AHAS is a target for the herbicides (sulfonylurea and imidazolinone), which act as potent inhibitors of the enzyme. Recently, we have shown [J. Kim, D.G. Baek, Y.T. Kim, J.D. Choi, M.Y. Yoon, Biochem. J. (2004) 384, 59-68] that the residues in the “mobile loop” 567-582 on the C-termini are involved in the binding/stabilization of the active dimer and ThDP (thiamin diphosphate) binding. In this study, we have demonstrated the role of the W573 in the mobile loop of the C-termini of tobacco AHAS. The substitution of this W573 residue caused significant perturbations in the activation process and in the binding site of ThDP. Position W573 plays a structurally important role in the binding of FAD, maintaining the enzyme active site in the required geometry for catalysis to occur. In here we propose that the tryptophan at position 573 is important for the catalytic process.

Kinetic Studies of Peptidylprolyl cis-trans Isomerase from Porcine Spleen

  • Kim, Soo-Ja;Lee, Chan
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.519-524
    • /
    • 1996
  • Peptidylprolyl cis-trans isomerase (PPlase) catalyzes the cis-trans isomerization of prolyl peptide and facilitates the folding of cellular proteins and peptides. PPlase consists of two distinct immunophilins, each specifically binding to the immunosupressive drug cyclosporin A (CsA) or FK506, respectively. A PPlase was isolated and partially purified from porcine spleen. The molecular weight of porcine spleen PPlase was determined to be ~14,000 on the basis of SDS-PAGE. The purified enzyme was strongly inhibited by FK506, but not by CsA. The inhibition constant and the true concentration of enzyme preparations were determined by active site titration using the tight binding inhibitor FK506: $K_{i}=18.7$ nM and $E_{t}=172$ nM. The equilibrium ratio of conformer. [cis]/[trans], of prolyl peptide substrates (N-Suc-Ala-Xaa-Pro-Phe-p-NA) in anhydrous trifluoroethanol/LiCl solvent system varied from 0.24 to 0.85 depending on the nature of Xaa. Overall. in this solvent-salt system, the populations of the cis conformer of substrates in equilibrium are higher than in an aqueous solution so that the substantial error caused by high background absorption can be reduced. The reactivities of porcine spleen PPlase are shown to be highly sensitive to changes in the structure of substrates. Thus, $k_{cat}/K_m$ value for the most reactive substrate (Xaa Leu) is $4.007+10^{6}M^{1}s^{1}$ and, is 2,636 fold higher than that for the least reactive peptide substrate tested, Xaa=Glu.

  • PDF

Upregulation of Dendritic Arborization by N-acetyl-D-Glucosamine Kinase Is Not Dependent on Its Kinase Activity

  • Lee, HyunSook;Dutta, Samikshan;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.322-329
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the ${\gamma}$-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The overexpression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.

Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum

  • Chan Hwi Lee;Sangwoo Kim;Hogyun Seo;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1595-1605
    • /
    • 2023
  • Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.

식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향 (A prognosis discovering lethal-related genes in plants for target identification and inhibitor design)

  • 황인택;이동희;최정섭;김태준;김범태;박유신;조광연
    • 농약과학회지
    • /
    • 제5권3호
    • /
    • pp.1-11
    • /
    • 2001
  • 신규 제초제 작용점의 발굴은 유전체학과 조합화학 등 새로운 기술이 등장하여 그 가능성이 높아지고 있다. 대략 $10^{30}$에서 $10^{50}$여 개의 화학물질의 합성이 가능하고 50,000여 개의 식물 유전자 지도가 완성되어 이들의 조합으로 새로운 제초제의 작용점 발굴 가능성이 높아지게 될 것이다. 즉, 고등식물이 가지고 있는 50,000여 개의 유전자 가운데 0.1%, 1.0% 또는 10%가 신규 작용점이 된다면 50, 500, 5000개의 신규 작용점을 발견할 수 있는 것이다. 신규 제초제의 개발을 위해서는 target enzyme의 선택과 결정, 저해제의 설계, 작용점까지 도달하는 과정, 대사적인 운명 등 여러가지 요인들이 검토되어야 한다. 이러한 과정에서 가장 중요한 것은 확실한 작용점의 선택에 있다. 또한 다양한 생화학적 정보를 통하여 작용점/효소의 저해로부터 고사에 이르는 과정을 이해함은 물론 보다 강력한 저해제의 합성과 살초과정을 이해할 수 있어야 할 것이다. 그 동안에는 이미 알려진 작용점을 대상으로 신규 화합물을 합성하거나 유도체를 개발하는 것이 대부분이었지만 최근에는 antisense 기법 등을 활용하여 새로운 치사관련 작용점을 찾아내는데 잠재력과 가능성을 확대시켜주고 있다. 새로운 치사관련 작용점을 발굴한 후에는 대상효소의 화학적, 생화학적 기능과 단백질의 구조를 분석하여 강력한 저해제를 설계하는데 활용하게 될 것이다. 치사관련 돌연변이체와 antisense 기법을 활용하고, 식물 생리학적 반응을 기초로 하여 리드화합물을 탐색하는 것은 새로운 접근방식이며 농약 화학적 특성을 갖는 효소 저해제들의 합성은 크게 6가지로 할 수 있다. 공통특이시얀 기질 유사체 합성, affinity labels, 자살기질체, 반응중간산물, 그리고 extraneous site inhibitors 등을 들 수 있다. 이와 같은 방법으로 후보화합물이 선발된다 하여도 실제식물에 처리하여 흡수, 이행, 대사 등에 관한 시험이 반드시 이루어져야 새로운 제초제를 탄생시킬 수 있다. 또한 약물의 전달과정과 무독화작용을 통하여 pro-herbicide에 대한 연구를 진행하게 될 것이며, 마지막으로 잡초와 작물간의 선택성이 고려되어야 효소 측이적 접근방식에 의한 신규 선택성 제초제의 개발이 성공할 수 있는 것이다.

  • PDF

Kinetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production Using Steam-Exploded Wood with Glucose- and Cellobiose-Fermenting Yease, Brettanomyces custersii

  • Moon, Hyun-Soo;Kim, Jun-Seok;Oh, Kyeong-Keun;Kim, Seung-Wook;Hong, Suk-In
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.598-606
    • /
    • 2001
  • A mathematical model is proposed that can depict the kinetics of simultaneous saccharification and fermentation (SSF) using steam-exploded wood(SEW) with a glucose- and cellobiose-fermenting yeast strain. Brettanomyces custersii. An expression to describe the reduction of the relative digestibility during the hydrolysis of the SEW is introduced in the hydrolysis model. The fermentation model also takes two new factors into account, that is, the effects of the inhibitory compounds present in the SEW hydrolysates on the microorganism and the fermenting ability of Brettanomyces custersii, which can use both glucose and cellobiose as carbon sources. The model equations were used to simulate the hydrolysis of the SEW, the fermentation of the SEW hydrolysates, and a batch SSF, and the results were compared with the experimental data. The model was found to be capable of representing ethanol production over a range of substrate concentrations. Accordingly, the limiting factors in ethanol production by SSF under the high concentration of the SEW were identified as the effect of inhibitory compounds present in the SEW, the enzyme deactivation, and a limitation in the digestibility based on the physical condition of the substrate.

  • PDF

In vitro inhibitory activities of urea analogues on bacterial urease

  • Chang, Pan-Sup;Shu, Byung-Se;Nancy A.Strockbine;Kunin, Galvin M
    • Archives of Pharmacal Research
    • /
    • 제9권3호
    • /
    • pp.163-167
    • /
    • 1986
  • Twenty six urea analogues, most of which have already been approved for human use, were tested for their antiurease activity in vitro. Cell-free extracts obtained from a clinical isolate of Proteus mirabilis was used as the source of enzyme. Acetohydroxamic acid which is a proven potent urease inhibitor but not approved for human use was again shown to be the most active compound among the tested. Phenacemide, cycloserine, and deferoxamine were demonstrated to be moderate inhibitors. Oxtetracycline, trimethoprim, and cefamandole revealed a demonstrable antiruease activity, but only at very high concentrations. The antiurease activity of cycloserine, trimethoprim, and cefamandole was pH dependent-only active at acidic pH. The inhibitory activity of acetohydroxamic acid however was independent of change in pH. The inhibitory activity of acetohydroxamic acid however was independent of change in pH. Hydrogen ion concentration plays an important role in urease activity and acidification (pH 5. 5) alone eliminates approximately 65% of the enzymic activity. Adjustment of pH therefore appears to be an important adjunct in reducing unrease activity and should always be studied to maximize the effcacy of antiurease compounds under investigation.

  • PDF