• 제목/요약/키워드: Enzymatic reaction

검색결과 719건 처리시간 0.024초

고초균에서 폴리페놀로 유도된 DNA 손상에 대한 폴리페놀산화효소의 억제효과 (The Inhibitory Effect of Polyphenol Oxidase on Polyphenol-Induced DNA Damage of Bacillus subtilis)

  • 김안근;김유경;강영숙
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.330-334
    • /
    • 2005
  • Antimutagenic activity of the enzymatic browning reaction products (EBRPs) was investigated by using the spore rec-assay with Bacillus subtilis strains H17 $(rec^+)\;and\;M45 (rec^-)$. The EBRPs tested were prepared from the reactions of five different kinds of polyphenols with polyphenol oxidase isolated from the leaves Perilla frutescens. In the spore rec-assay, most of the polyphenolic compounds tested showed positive, whereas only their tested compound showed negative respectively. In addition of polyphenol oxidase inhibitors such as cysteine, glutathione and ascorbic acid to the reaction mixtures consisted with the polyphenol oxidase and polyphenols, the mutagenic effects were increased in the spore recassay. These results show that the activity of polyphenol oxidase may play an important role in the reduction of mutagenicity of polyphenols.

Multi-step Reactions on Microchip Platform Using Nitrocellulose Membrane Reactor

  • Park, Sung-Soo;Joo, Hwang-Soo;Cho, Seung-Il;Kim, Min-Su;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.257-262
    • /
    • 2003
  • A straightforward and effective method is presented for immobilizing enzymes on a microchip platform without chemically modifying a micro-channel or technically microfabricating a column reactor and fluid channel network. The proposed method consists of three steps: the reconstitution of a nitrocellulose (NC) membrane on a plane substrate without a channel network, enzyme immobilization on the NC membrane, and the assembly of another substrate with a fabricated channel network. As a result, enzymes can be stably and efficiently immobilized on a microchip. To evaluate the proposed method, two kinds of enzymatic reaction are applied: a sequential two-step reaction by one enzyme, alkaline phosphatase, and a coupled reaction by two enzymes, glucose oxidase and peroxidase, for a glucose assay.

Glucoamylase 및$\alpha$-Amylase의 분쇄마찰매체 효소반응계에서의 생전분 효소분해 Mechanism (Mechanism of Enzymatic Hydrolysis of Raw Corn Starch by Purified Glucoamylase of $\alpha$-Amylase in an Agitated Bead Reaction System)

  • 박동찬;이용현
    • 한국미생물·생명공학회지
    • /
    • 제18권3호
    • /
    • pp.260-267
    • /
    • 1990
  • 분쇄마찰매체 함유 효소반응계에서 순수분리된 glucoamylase 또는 $\alpha$-amylase에 의한 옥수수 생전분의 효소당화 mechanism을 규명코자, 생성된 당조성, SEM을 이용한 전분입자의 구조, 효소흡착량 그리고 amylose 함량 등의 변화를 관찰하였다. 생성당 조성은 분쇄마찰매체 효소반응계에서도 큰 변화없이 glucoamylase의 경우 반응초기부터 glucose가 주로 생성되었고, $\alpha$-amylase의 경우에는 maltopentaose (G5)를 포함한 oligosaccharide(G2-G8)가 주고 생성되었고 약간의 glucose가 포함되었으며, 당조성은 경시적으로 크게 변하지 않았다. SEM으로 전분입자의 구조를 관찰한 결과, 효소를 첨가하지 않을 경우 분쇄마찰매체의 기계적 충격은 전분입자의 구조변화에 큰 영향을 미치지는 못하였고 다만 전분입자를 균열시켰다.

  • PDF

효소반응법을 이용한 우황 및 우황함유 액상 제제 중 총담즙산의 정량 (Quantitative Determination of Total Bile Acids from Bezoar and Bezoar-containing Liquid Preparation by Enzymatic Technique)

  • 하인식;김승환;차봉진;권종원;양중익;민신홍
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권2호
    • /
    • pp.67-71
    • /
    • 1991
  • A simple and sensitive method was developed for the quantification of free and conjugated bile acids in bezoar without prior hydrolysis. $3{\alpha}-Hydroxy$ bile acids are first oxidized to 3-keto bile acids in the reaction catalyzed by $3{\alpha}-hydroxysteroid$ $dehydrogenase(3{\alpha}-HSD)$. During this oxidative reaction, an equimolar quantity of nicotinamide adenine dinucleotide(NAD) is reduced to NADH and subsequently oxidized to NAD with concomitant reduction of nitrotetrazolium blue(NTB) to diformazan by the catalytic action of diaphorase. The diformazan has an absorbance maximum at 540 nm. The intensity of the color produced is directly proportional to bile acids concentration in the bezoar extracts. The optimum conditions for the enzymatic reaction such as effects of reaction time, reaction temperature and pH, and stability were investigated. Calibration plots for the sodium chelate observed to be linear and intra-, inter-assay analytical recovery of bile acids averaged $97.65{\pm}3.4%(S.D.)$. Therefore, it is considered that the quality control of total bile acids from bezoar or bezoar-containing liquid preparation using this simple and sensitive assay system will be acceptable. Also current bezoars and bezoar-containing liauid preparations were examined their total bile acids from this method.

  • PDF

억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향 (The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment)

  • 박선태;구본철;최용환;문윤호;안승현;차영록;김중곤;안기홍;서세정;박돈희
    • 신재생에너지
    • /
    • 제6권4호
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

Kinetic Study on the Enzymatic Production of D-Alanine from D-Aspartic Acid

  • Lee, Jae-Heung;Sung, Moon-Hee;Jeon, Yeong-Joong
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.33-37
    • /
    • 2002
  • An enzymatic reaction for the production of D-alanine from D-aspartic acid and pyruvate as substrates by a thermostable D-amino acid aminotransferase (D-AAT) was investigated at various conditions In the temperature range of 40-70$\^{C}$ and pH range of 6.0-9.5. The D-AAT was produced with recombinant E. coli BL21, which hosted the chimeric plasmid pTLK2 harboring the D-AAT from the novel thermophilic Bacillus sp. LK-2. The enzyme reaction was shown to follow the Ping Pong Bi Bi mechanism. The K$\_$m/ values for D-aspartic acid and pyruvate were 4.38 mar and 0.72 mM, respectively. It was observed that competitive inhibition by D-alanine, the product of this reaction, was evident with the inhibition constant K$\_$i/ value of 0.1 mM. A unique feature of this reaction scheme is that the decorboxylation of oxaloacetic acid, one of the products, spontaneously produces pyruvate. Therefore, only a catalytic amount of pyruvate is necessary for the enzyme conversion reaction to proceed. A typical time-course kinetic study skewed that D-alanine up to 88 mM could be produced from 100 mM of D-aspartic acid with a molar yield of 1.0.

Response Surface Methodological Approach for Optimization of Enzymatic Synthesis of Sorbitan Methacrylate

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Kim, Hae-Sung;Lee, Woo-Tai;Sunwoo, Chang-Shin;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.511-516
    • /
    • 2005
  • Sorbitan methacrylate was synthesized from sorbitan dehydrated from D-sorbitol using an immobilized lipase. To optimize the enzymatic synthesis of sorbitan methacrylate, response surface methodology was applied to determine the effects of five-level-four-factors and their reciprocal interactions on sorbitan methacrylate biosynthesis. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, enzyme amount and substrate molar ratio. A statistical model predicted that the highest conversion yield of sorbitan methacrylate was 100%, at the following optimized reaction conditions: a reaction temperature of 43.06 $^{\circ}C$, a reaction time of 164.25 mins., an enzyme amount of 7.47%, and a substrate molar ratio of 3.98:1. Using these optimal factor values under experimental conditions in four independent replicates, the average conversion yield reached 98.7%${\pm}$1.2% and was well within the value predicted by the model.

  • PDF

In Vitro Glycosylation of Peptide (RKDVY) and RNase A by PNGase F

  • Park, Su-Jin;Lee, Ji-Youn;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.191-195
    • /
    • 2003
  • The in vitro glycosylation of pentapeptide (Arg-Lys-Asp-Val-Tyr; RKDVY) and RNase A was carried out using PNGase F (peptide-N-glycosidase F), and the results were analyzed using MALDI-TOF-MS. Aminated N,N-diretyl chitobiose was used as the sugar in the glycosylation reaction, and the amination yield of N,N'-diacetyl chitobiose was about $60\%$. To reduce the water activity and shift the reaction equilibrium to a reverse reaction, 1,4-dioxane or ethylene glycol was used as the organic solvent in the enzymatic glycosylation. A certain extent of nonenzymatic glycosylaton, known as the Maillard reaction, was also observed, which occurs on an arginine or lysine residue when the length of tie sugar residue is one or two. However, the extent of glycosylation was much higher in the enzymatic reaction, indicating that PNGase F can be effectively used to produce glycopeptides and glycoproteins in vitro.

Reaction Route for Enzymatic Production of Neofructor-oligosaccharides from Sucrose Using Penicillium citrinum Cells

  • Lee, Jae-Heung;Satoru Shinohara
    • Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.331-333
    • /
    • 2001
  • The production of oilgosaccharides using Penicillium citrium cells at high sugar concentrations was investigated at 50$\^{C}$ and pH 5.0. Both 1-kestose and neokestose were produced form sucrose, while both nystose and tetrasaccharide were produced from 1-kestose. However, no reaction product was obatined from neogructo-oligosaccharides such as neokestos. Based on these experimental rsults, a hypothetical reaction route was proposed to illustrate how neofructor-oilgosaccharids are formed from 1-kestose.

  • PDF

Reaction Flavoring에 의한 진주조개 (Pinctada fucata) 추출물의 풍미개선 (Enhancing the Flavor of Pearl Oyster (Pinctada fucata) Extract Using Reaction Flavoring)

  • 강정구;남기호;강진영;황석민;김정균;오광수
    • 한국수산과학회지
    • /
    • 제40권6호
    • /
    • pp.350-355
    • /
    • 2007
  • The optimal substrates and reaction flavoring conditions were examined to develop pearl oyster extract (POE) flavor using the Maillard reaction under a model system. The sugar for the Maillard reaction was glucose, and the amino acid was cysteine, with glycine as the reaction substrate. A three-dimensional response surface method was used to monitor the dynamic changes of the substrates during the Maillard reaction. To enhance the flavor of POE, a two-step enzymatic hydrolysate (Brix $20^{\circ}$) was reacted with the precursors (1:1, v/v). A 2:1:1 mixture of 0.4 M glucose:0.4 M glycine:0.4 M cysteine (v/v) was selected as a suitable reaction system for the reappearance of baked potato odor and boiled meat odor, and masking the shellfish odor. The two-step enzymatic hydrolysate and selected precursors were reacted in a high-pressure reactor to optimize the reaction parameters. The optimum conditions were 150 minutes at $120\;^{\circ}C$ and pH 7.0. The pH was the most critical factor for the response of the baked potato odor and masking the shellfish odor, while the reaction time affected the reappearance of the boiled meat odor.