• Title/Summary/Keyword: Enzymatic pattern

Search Result 68, Processing Time 0.023 seconds

Enzymatic production of Fructo-oligosaccharides from Sucrose (자당으로부터 프럭토올리고당의 효소적 생산 연구)

  • 신형태;백순용;이수원;서동상;권석태;김종남;임유범;이재흥
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.555-559
    • /
    • 2002
  • Three different strains of Aureobasidium pullulans were grown in batch cultures to compare their abilities of enzyme production. It was found that specific enzyme activity was the highest with strain ATCC 9348 and the enzyme production was closely coupled to growth. Studies on morphology during the growth of A. pullulans revealed that mycelia cells were dominant at the initial stages of growth. However, yeast-like cells and chlamydospores were dominant in the latter stages of batch culture. The pattern of morphological changes during the growth period was not affected by pH. However, it appears that the ratio of intra- to extracellular enzyme activity tended to increase with fermentation time irrespective of the pH employed, suggesting that the secretion efficiency of intracellular enzyme to broth likely depends on cell morphology Using molasses as a cheap source of sucrose, enzymatic production of fructo-oligosaccharides as a feed additive with A. pullulans cells could be achieved successfully at 55$\^{C}$ and pH 5.5.

Reaction Pattern of Bacillus cereus D-11 Chitosanase on Chitooligosaccharide Alcohols

  • Gao, Xing-Ai;Jung, Woo-Jin;Kuk, Ju-Hee;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.358-361
    • /
    • 2009
  • The purified endochitosanase(Mw 41 kDa) from bacterium Bacillus cereus D-11 hydrolyzed chitooligomers $(GlcN)_{5-7}$ into chitobiose, chitotriose, and chitotetraose as the final products. The minimal size of the oligosaccharides for enzymatic hydrolysis was a pentamer. To further investigate the cleavage pattern of this enzyme, chitooligosaccharide alcohols were prepared as substrates and the end products of hydrolysis were analyzed by TLC and HPLC. The chitosanase split $(GlcN)_4GlcNOH$ into $(GlcN)_3+(GlcN)_1GlcNOH$, and $(GlcN)_5GIcNOH$ into $(GlcN)_4+(GlcN)_1GlcNOH$ and $(GlcN)_3+(GlcN)_2GlcNOH$. The heptamer $(GlcN)_6GlcNOH$ was split into $(GlcN)_5$ [thereafter hydrolyzed again into $(GlcN_3+(GlcN)2]+(GlcN)_1GlcNOH$, $(GlcN)_4+(GlcN)_2GlcNOH$, and $(GlcN)_3+(GlcN)_3GlcNOH$, whereas $(GlcN)_{1-3}GlcNOH$ was not hydrolyzed. The monomers GlcN and GIcNOH were never detected from the enzyme reaction. These results suggest that D-11 chitosanase recognizes three glucosamine residues in the minus position and simultaneously two residues in the plus position from the cleavage point.

Effect of Hydrothermal and Enzymatic Treatments on the Physicochemical Properties of Waxy Maize Flour (열수 및 효소 처리에 의한 찰옥수수가루의 물리화학적 특성)

  • Lee, Dong-Jin;Choi, So-Mang;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • Physicochemical properties of waxy maize flours prepared by hydrothermal and enzymatic treatments were evaluated. Waxy maize flours were hydrothermally treated using heat-moisture treatment (HMT) and annealing (ANN) and enzymatically treated using commercial enzymes (cellulase, proteinase, and pectinase). The HMT-modified waxy maize flours had low water absorption index (WAI), melting enthalpy, viscosity, and crystallinity. However, ANN-modified and enzymatically modified waxy maize flours had high WAI, melting enthalpy, and viscosity. X-ray diffraction analysis of ANN-modified and enzymatically modified waxy maize flours revealed a typical A-type pattern and displayed sharper crystalline peaks than those observed for the control groups (native waxy maize flours). In contrast, the crystallinity of HMT-modified waxy maize flours were decreased by hydrothermal treatment.

Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines (안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용)

  • Park, Jae Eun;Lee, Byung-Tae;Lee, Sang Woo;Kim, Soon-Oh;Son, Ahjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.265-276
    • /
    • 2017
  • Heavy metals leaching from closed mines have been causing severe environmental problems in nearby soil ecosystems. Mine reclamation in Korea has been recently implemented based on the heavy metal immobilization (a.k.a., stabilization). Since the immobilization temporarily fixes the heavy metals to the soil matrix, the potential risk of heavy metal leaching still exists. Therefore the appropriate monitoring and the related policies are required to safeguard the soils, where all the cultivations occur. The current monitoring methods are based on either heavy metal concentration or simple toxicity test. Those methods, however, are fragmented and hence it is difficult to evaluate the site in an integrated manner. In this study, as the integrated approach, ecological functional state evaluation with a multivariate statistical tool was employed targeting physiochemical soil properties, heavy metal concentrations, microbial enzymatic activity, and arsenic respiratory reductase gene quantity. Total 60 soil samples obtained from three mines (Pungjeong, Jeomdong, Seosung) were analyzed. As a result, the stabilized layer soil and lower layer soil have shown the similar pattern in Pungjeong mine. In contrast, Jeomdong and Seosung mine have shown the similarity between the stabilized layer soil and the cover layer soil, indicating the possible contamination of the cover layer soil.

Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju (전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성)

  • 정낙현;신용서;김성호;임무현
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.

Purification and Characterization of S-adenosylmethionine Synthetase from Soybean (Glycine max) Axes

  • Kim, Dae-Gun;Park, Tae-Jin;Kim, Jong-Yeol;Cho, Young-Dong
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.100-106
    • /
    • 1995
  • S-adenosylmethionine (SAM) synthetase was purified to homogeneity from soybean (Glycine max) axes. The enzyme was purified 216-fold with a 1.5% yield by ammonium sulfate fractionation, acetone fractionation, ion exchange chromatography with DEAE-sephacel, gel filtration with Sephacryl S-300, and afffinity chromatography with ATP-agarose. The enzyme activity reached a maximum 3 days after germination. SAM synthetase had a subunit molecular weight of 57,000 daltons from a silver stained single band on SDS-PAGE. The molecular weight of the enzyme was 110,000 daltons from Sephacryl S-300 gel filtration. The enzyme was composed of two identical subunits. The $K_m$ values of the enzyme for L-methionine and ATP were 1.81 and 1.53 mM, respectively. The enzymatic activity was not affected by polyamines, agmatine, or SAM analogues, but was inhibited by SAM. The inhibition pattern was showed non-competitive for L-methionine and uncompetitive for ATP. The activity of SAM synthetase was inhibited by thiol-blocking reagents. The enzyme was induced by treatment with $10^{-3}$ M putrescine at germination. Experimental data revealed a possible novel regulation mechanism of polyamine biosynthesis through several endogenous intermediates.

  • PDF

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Modulation of Hydrolysis and Transglycosylation Activity of Thermus Maltogenic Amylase by Combinatorial Saturation Mutagenesis

  • Oh, Su-Won;Jang, Myoung-Uoon;Jeong, Chang-Ku;Kang, Hye-Jeong;Park, Jung-Mi;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1401-1407
    • /
    • 2008
  • The roles of conserved amino acid residues (Va1329-Ala330-Asn331-Glu332), constituting an extra sugar-binding space (ESBS) of Thermus maltogenic amylase (ThMA), were investigated by combinatorial saturation mutagenesis. Various ThMA mutants were firstly screened on the basis of starch hydrolyzing activity and their enzymatic properties were characterized in detail. Most of the ThMA variants showed remarkable decreases in their hydrolyzing activity, but their specificity against various substrates could be altered by mutagenesis. Unexpectedly, mutant H-16 (Gly-Leu-Val-Tyr) showed almost identical hydrolyzing and transglycosylation activities to wild type, whereas K-33 (Ser-Gly-Asp-Glu) showed an extremely low transglycosylation activity. Interestingly, K-33 produced glucose, maltose, and acarviosine from acarbose, whereas ThMA hydrolyzed acarbose to only glucose and acarviosine-glucose. These results propose that the substrate specificity, hydrolysis pattern, and transglycosylation activity of ThMA can be modulated by combinatorial mutations near the ESBS.

Effect of Carrot Juice on Enzymatic Browning of Potato Juice (당근 쥬스가 감자 쥬스의 효소적 갈변 반응에 미치는 영향)

  • 김미정;이창용
    • Korean journal of food and cookery science
    • /
    • v.9 no.3
    • /
    • pp.181-186
    • /
    • 1993
  • Potato and carrot are the main sourses of vitamin C and vitamin A each. As a folk ramedy, potato-carrot mixtures have been used to cure a stomach ulcer in Korea. To investigate the effects of carrot juice on the browning of potato juice, we examined the brewing in various ratio of two juices. We also investigated the role of potato juice in the carotene oxidation of carrot juice. Delta "L" values of potato juice were abruptly decreased after 5 min. reaction and they were very different from the juice mixture of potato and carrot. Those containing higher ratio of potato were decreased greatly. In blanching treatment to eliminate the effect of the enzymes in potato and carrot, delta "L" values of cooked potato were decreased a little but those of cooked carrot were decreased greatly. To investigate the fact that the inhibitory effect of carrot juice in potato browning was due to the dilution of polyphenolics of potato juices by carrot juice mixing, we added H20 equivalent to carrot water content to potato juice. The diluted sample showed less decreasing pattern than nondiluted sample. We also added appropriate amount of ${\beta}$-carotene to the same samples. Delta "L" values of with added B-carotene were more slowly decreased than those of without added B-carotene.

  • PDF

Regulation of Enzymes Involved in Methionine Biosynthesis in Corynebacterium glutamicum

  • Yeom, Hye-Jin;Hwang, Byung-Joon;Lee, Myong-Sok;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.373-378
    • /
    • 2004
  • The regulatory mechanism of methionine biosynthesis in Corynebacterium glutamicum was analyzed at the protein arid gene expression level. O-Acetylhomoserine sulfhydraylase (encoded by metY) was inhibited by 10 mM methionine to a residual activity of 10% level, whereas no such inhibition was found with cystathionine $\gamma$-synthase (encoded by metB) and cystathionine $\beta$-lyase (encoded by metC). The enzymatic activity of homoserine acetyltransferase (encoded by metX) was repressed to a residual activity of 25% level by 10 mM methionine which was added to the growth medium. Cystathionine $\gamma$-synthase and cystathionine $\beta$-lyase were also repressed by 10 mM methionine, but only to a residual activity of 50-70% level. O-Acetylhomoserine sulfhydrylase was very sensitive to repression by 10 mM methionine, showing residual activity of 13%. In addition, homoserine acetyltransferase was also repressed by 10 mM cysteine to 50% of its original activity. No repression of the enzymes by S-adenosyl methionine was observed. The pattern of repression by methionine indicated that the metB and aecD genes might be regulated by a common mechanism, while the metA and metY genes are differently regulated.