• Title/Summary/Keyword: Enzymatic hydrolysates

Search Result 201, Processing Time 0.027 seconds

Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

  • Park, Soo Yeon;Je, Jae-Young;Hwang, Joung-Youl;Ahn, Chang-Bum
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.176-182
    • /
    • 2015
  • Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with $IC_{50}$ of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of $457.6{\mu}M$ trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited $H_2O_2$ scavenging activity with $IC_{50}$ of 0.48 mg/mL and $Fe^{2+}$+ chelating activity with $IC_{50}$ of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected $H_2O_2$-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

Immunostimulatory Effect of Ovomucin Hydrolysates by Pancreatin in RAW 264.7 Macrophages via Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway

  • Jin-Hong Jang;Ji-Eun Lee;Kee-Tae Kim;Dong Uk Ahn;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.885-898
    • /
    • 2024
  • Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.

Enzymatic preparation and antioxidant activities of protein hydrolysates from Gryllus bimaculatus (쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성)

  • Cho, Hye-Rin;Lee, Yoo-Jung;Hong, Ji-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • Gryllus bimaculatus (GB) has recently been registered as a food variety in Korea. In the present study, we prepared protein hydrolysates from GB and evaluated their antioxidant capacity. Protein hydrolysates were prepared from dried GB using enzymatic hydrolysis using five different proteases, and protein hydrolysates showing high hydrolysis value (alcalase, flavourzyme, and neutrase) were separated further into fractions ${\leq}3kDa$ and then lyophilized. Based on $RC_{50}$ values of hydrolysates (${\leq}3kDa$) obtained from four different antioxidant analyses, the flavourzyme hydrolysates showed relatively high levels of antioxidant capacity among the three hydrolysates, and in particular, it showed considerably strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The flavourzyme hydrolysate also significantly inhibited peroxidation of linoleic acid. These results suggest that protein hydrolysates from GB represent potential sources of natural antioxidants. Our current studies are focused on identification of active peptides from the flavourzyme hydrolysate.

Antioxidative Effect of Enzymatic Protein Hydrolysate from Lecithin-Free Egg Yolk (레시틴 추출 잔사인 계란노른자의 효소적 단백질 가순분해물의 항산화 특성)

  • 박표잠;정원교;최영일;김세권
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • Lecithin-free egg yolk protein (EYP), the by-product of lecithin extraction from egg yolk, which is denatured with an organic solvent, would normally be discarded. In this study, the denatured protein was renatured with alkali, and hydrolyzed with Alcalase in order to utilize by-product. The hydrolysate was separated through a series of ultrafiltration membranes with molecular weight cut-off (MWOO) of 10, 5 and 1 kDa, and the antioxidative activities of the hydrolysates was investigated. The 5K hydrolysate, permeate from 5 kDa membrane, showed stronger antioxidative activity than 10 K and 1 K hydrolysate which were permeated from 10 kDa and 1 kDa membrane, in a linoleic acid autoxidation system. In addition, the optimum concentration of antioxidative activity for 5 K hydrolysate was 1%, and the activity was about 37% higher as compared with α-tocopherol. The synergistic effect was also increased by using the hydrolysates with α-tocopherol.

  • PDF

Antioxidant and antimicrobial activities of different enzymatic hydrolysates from desalted duck egg white

  • Thammasena, Rommanee;Liu, Deng Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1487-1496
    • /
    • 2020
  • Objective: The objective of this study was to look for optimal preparation of hydrolysates of desalted duck egg white powder (DDEWP) by the three different proteases and to investigate their antioxidant and antimicrobial properties. Methods: DDEWP was hydrolyzed by three proteases, including pepsin (PEP), Bacillus spp. (BA) and natokinase (NAT) with three different enzyme concentrations (0.1%, 0.3%, and 0.5%), individually. The important key hydrolysis parameters such as hydrolysis degree, yield, antioxidant and antimicrobial activity were evaluated in this experiment. Results: The results showed that the degree of hydrolysis (DH) of all treatments increased with increasing hydrolysis time and protease concentrations. The antioxidant and antimicrobial activities of the hydrolysates were affected by type and concentration of protease as well as hydrolysis time. Hydrolysis of PEP significantly (p<0.05) obtained the highest yield of hydrolysates, however, both of BA and NAT showed substantially lower DH values and still did not exceed 5% by the end of hydrolysis. Among the different hydrolysates, PEP exhibited significantly higher 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than BA and NAT. All DDEWP hydrolysates from PEP had low ferrous ion chelating activity (<37%) that was significantly lower than that of NAT (>37% to 92%) and BA (30% to 79%). Besides, DDEWP hydrolysates of PEP presented significantly higher reducing power than BA and NAT. In antimicrobial activities, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa were not effectively inhibited by any DDEWP hydrolysates of PEP except for Staphylococcus aureus. Especially, the excellent antibacterial activity against S. aureus only was displayed in DDEWP hydrolysates of PEP 0.1%. Conclusion: DDEWP hydrolysates from PEP demonstrated significantly better DH, yield, DPPH radical scavenging activity and reducing power, furthermore, had excellent inhibitory on S. aureus due to large clear zone and moderated inhibitory in bactericidal inhibition.

Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

  • Jeewanthi, Renda Kankanamge Chaturika;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.350-359
    • /
    • 2015
  • This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Tenebrio molitor Larvae (Mealworm) (갈색거저리 유충 단백가수분해물의 제조 및 항산화 활성)

  • Yu, Mi-Hee;Lee, Hyo-Seon;Cho, Hye-Rin;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • The present study was carried out to evaluate the applicability of Tenebrio molitor larvae (mealworm) as a health functional food material in order to contribute to the development of the domestic insect industry and health functional food industry. Protein hydrolysates were prepared from mealworm powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and the hydrolysates were then tested for their antioxidant activities. Based on available amino group contents and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses, mealworms treated with alcalase ($4,781.39{\mu}g/mL$), flavourzyme ($5,429.35{\mu}g/mL$), or neutrase ($3,155.55{\mu}g/mL$) for 24 h showed high degree of hydrolysis (HD) value, whereas HD values of bromelain ($1,800{\mu}g/mL$) and papain-treated ($1,782.61{\mu}g/mL$) mealworms were much lower. Protein hydrolysates showing high HD values were further separated into > 3 kDa and ${\leq}3kDa$ fractions by a centrifugal filter system and then lyophilized, and the production yields of the low molecular weight protein hydrolysates (${\leq}3kDa$) by alcalase, flavourzyme, and neutrase were 42.05%, 26.27%, and 30.01%, respectively. According to the RC_{50} values of the protein hydrolysates (${\leq}3kDa$) obtained from three different antioxidant analyses, all three hydrolysates showed similar antioxidant activities. Thus, alcalase hydrolysates showing the highest production yield of low molecular weight protein hydrolysates were further tested for their inhibitory effects on peroxidation of linoleic acid by measuring thiobarbituric acid values, and the results show that peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation. However, pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited linoleic acid peroxidation in a dose-dependent manner over 6 days.

Enzymatic preparation and antioxidant activities of protein hydrolysates derived from tuna byproducts (참치 가공부산물로부터 단백가수분해물 제조 및 항산화 활성 평가)

  • Gyu-Hyeon Park;Jeong-Min Lee;Na-Young Lim;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.885-895
    • /
    • 2023
  • This study aims to investigate the production and characteristics of protein hydrolysates derived from tuna byproducts (TP) using various proteolytic enzymes and to compare the antioxidant activity of the resulting hydrolysates. The TP were subjected to enzymatic hydrolysis using five different proteases: alcalase, bromelain, flavourzyme, neutrase, and papain, and the antioxidant activities of the hydrolysates were evaluated. Subsequent analysis of the available amino group contents and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns indicated a high degree of hydrolysis in TP after treatment with all the enzymes, except for papain. Based on the RC50 values obtained from four different antioxidant analyses, all the hydrolysates exhibited similar antioxidant activity, except for the flavourzyme hydrolysate, which showed significantly higher scavenging activity against ABTS radicals and hydrogen peroxide than the other hydrolysates. These findings suggest that protein hydrolysates derived from TP hold promise as potential sources of natural antioxidants.

Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology

  • Yu, Hui-Chuan;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • Objective: The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). Methods: The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature ($40^{\circ}C$, $54^{\circ}C$, and $68^{\circ}C$), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Results: Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (p<0.01). The optimal conditions for producing PLHs with the highest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, $55.5^{\circ}C$; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Conclusion: Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.

Enzymatic Hydrolysis of Silk Sericin and Its Anti-oxidative Effect (효소에 의한 실크 세리신의 가수분해와 항산화 효과)

  • Lee, Ki-Hoon;Kim, Moo-Kon;Oh, Han-Jin;Lee, Ji-Young;Lee, Jeong-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • In this study, we hydrolyzed hot-water extracted sericin with single or two enzymes and investigated anti-oxidative effect on DPPH free radical and inhibitory effect on tyrosinase activity of the sericin hydrolysates. Alcalase, flavourzyme, and protamex were effective in hydrolyzing sericin. Sericin was degraded into the range of 20 ${\sim}$ 30 kDa. The sericin hydrolysate was shown to have stronger antioxidant properties than the original sericin. In the case of flavourzyme and protamex combination, the scavenging effect of sericin hydrolysate on DPPH radical was increased up to about 85 %. However, the inhibitory effect on tyrosinase activity of enzymatic hydrolysates was lower than that of the original sericin. After fractionation of sericin hydrolysates, we found that F2 and P3 fraction has higher inhibitory effect on tyrosinase activity compared to other fractions.