• Title/Summary/Keyword: Enzymatic conversion

Search Result 193, Processing Time 0.026 seconds

Biosynthesis of Unnatural Phospholipids by Phospholipase D: I. Synthesis in A Emulsion System (Phospholipase D에 의한 비천연 인지방질의 합성: I. 에멀젼계 내에서의 합성)

  • 정의호;이해익이상영
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.271-279
    • /
    • 1991
  • Phosphatidylglycerol(PG) and two unnatural phospholipids, phosphatidylethyleneglycol (PEG) and phosphatidylpropyleneglycol(PPG), were synthesized from ovolecithin using cabbage phospholipase D(PLD) in a emulsion system. Optimum pH and temperature for the enzymatic synthesis of PG, PEG and PPG in the emulsion system was 5.0-5.6 and 37$^{\circ}C$, respectively. The maximum activity for transphosphatidylation was obtained with 30-80 mM Ca++. Addition of 25% glycerol was required to convert completely ovolecithin to PG, whereas 16% glycerol was sufficient to attain the highest rate of conversion for both PEG and PPG syntheses, the highest conversion rate was obtained with addition of either 10% ethyleneglycol or propyleneglycol. However, the concentration of alcoholic acceptor should be increased up to 20% to improve selectivity up to 100% for PEG or PPG synthesis. Identification of PEG and PPG was made by analyzing the polyvalent alcohols released after their hydrolysis by HCl or PLD.

  • PDF

Sorbitan acrylate의 Novozyme 435를 이용한 효소적 합성에 관한 연구

  • Im, Geun-Gil;Kim, In-Hong;Lee, Gwang-Yeon;Gang, Chun-Hyeong;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.562-565
    • /
    • 2002
  • The esterification reaction of previously obtained l,4-sorbitan with acrylic acid using Novozym 435 was carried out in t-butanol as solvent. Immobilized lipase Novozym 435 showed high enzymatic activity at $50^{\circ}C$ in t-butanol and optimum contents of Novozym 435 added in the esterification reaction was 3%(w/v). The maximum conversion rate was 55.8% when initial concentration was 50g/L and conversion rate of this reaction was 63.5% when the molar ratio of l,4-sorbitan to acrylic acid was 1:3.

  • PDF

Purification and Characterization of Cyclodextrin Glucanotransferase Excreted from Newly Isolated Alkalophilic Bacillus circulans (Alkalophilic Bacillus circulans가 생산하는 Cyclodextrin Glucanotransferase 의 정제와 효소반응특성)

  • 신현동;이상호;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 1989
  • An Alkalophilic Bacillus circulans that can produce significant amount of cyclodextrin glucanotransferase (CGTase) was newly isolated from soil. The culture filtrate was successively purified by ($NH_4$)$_2$$SO_4$precipitation, DEAE-Sephadex column chromatography, and Sephadex G-100 column chromatography. The enzymatic properties, including molecular weight, optimal pH and temperature, stability, and kinetic parameters, were determined. The cyclodextrin synthesis reaction catalized by the purified CGTase was also studied. The sweet potato and corn starch were found to be the most suitable substrates with 60% conversion to cyclodextrin. The highest conversion was achieved at the CGTase concentration of 900-1,100 units/g of soluble starch. The purified CGTase could also catalize the transglycosylation on stevioside.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide (초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성)

  • Back, Sung-Sin;Kwon, Kyung-Tae;Jung, Go-Woon;Ahn, Hyaung-Min;Sim, Jeong-Eun;Kang, Hee-Moon;Chun, Byung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.546-552
    • /
    • 2009
  • Enzymatic ethanolysis of wheat germ oil with immobilized lipase was investigated for enhancing the function of wheat germ oil. Ethanolysis reactions were carried out in two different systems; non-pressurized and pressurized system. In non-pressurized system, the enzymatic ethanolysis was carried out in an erlenmeyer flask(25 ml) containing a mixture of wheat germ oil and 99.90% ethanol using 1~5 wt% immobilized lipase as Lipozyme TL-IM and Lipozyme RM-IM and the reaction mixtures were incubated at $40{\sim}70^{\circ}C$ with 120 rpm shaking. In pressurized system, the enzymatic ethanolysis was carried out at various condition; immobilized lipase concentration(2 wt%), reaction time(24 h), reaction temperature($40{\sim}60^{\circ}C$) and reaction pressure(75, 100, 150, 200 bars). The samples obtained from each fraction were analyzed by HPLC for analysing contents of monoglyceride, diglyceride, and triglyceride. The conversion of wheat germ oil relied on the reaction temperature and the concentration of immobilized lipase. The optimum condition of enzymatic ethanolysis in non-pressurized and pressurized systems was at $50^{\circ}C$ and 100 bar.

Bioethanol Production from Wasted Corn Stalk from Gangwon Province : from Enzymatic Hydrolysis to Fermentation (강원지역 폐옥수수대로부터 바이오에탄올 생산 : 효소 당화부터 발효까지)

  • Choi, Jae Min;Choi, Suk Soon;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2012
  • Among the samples prepared by various pre-treatment methods, the one pretreated by dilute sulfuric acid showed the highest glucose yield in the enzymatic hydrolysis. Statistical analysis of enzymatic hydrolysis revealed that the glucose yield was in proportion to the enzyme dosage, the ratio of the pre-treated sample to the buffer solution, and the reaction time and that the effect of enzyme dosage was predominant in the experiment range. In addition, the glucose yield was estimated to be 76.1% at an optimal enzymatic hydrolysis condition. In a separate hydrolysis and fermentation (SHF), Saccharomyces cerevisiae converted over 80% of glucose from the enzymatic hydrolysis of pre-treated wasted corn stalk by dilute sulfuric acid to bioethanol with 37% of ethanol yield and 0.42 $g/L{\cdot}hr$ of productivity. In the simultaneous saccharification and fermentation (SSF), 59.5% of conversion from glucan to ethanol and 0.20 $g/L{\cdot}hr$ of productivity were achieved. In both SHF and SSF, approximately 88 g of bioethanol could be obtained from 1 kg of wasted corn stalk. The possible amount of bioethanol in Gangwon province were estimated to be 1.9 kiloton with the assumption of the 50% of collection ratio.

Effect of Water-Activity Depressor on the Enzymatic Synthesis of Maltosyl-$\beta$-Cyclodextrin through the Reverse Reaction of Pullulanase (Water-Activity Depressor가 Pullulanase의 역반응에 의한 Maltosyl-$\beta$-Cyclodextrin의 합성에 미치는 영향)

  • 이용현;한일근
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.422-429
    • /
    • 1992
  • The effect of various water-activity depressors, such as pol yo Is, sugars, and polymers, on the conversion yields of the enzymatic synthesis of maltosyl-$\beta$-cyclodextrin from $\beta$-cyc1odextrin and maltose through reverse reaction of pullulanase was investigated. PEG 6000 of concentration of 10% (w/w) was found to be the most acceptable water-activity depressor resulting for increment of conversion yield from 43.0% to 55.9%, corresponding maltosyl-$\beta$-cyc1odextrin concentration of 3.02 g/100 ml H20. Water activity was changed from initial 0.966 to 0.914 upon addition of 20% (w/w) of PEG 6000. The conversion yields were inversely proportional to the water activities, and the increased conversion yield was caused by water activity depression which inhibited the hydrolysis reaction of maltosyl-$\beta$-CD to maltose and $\beta$-cyc1odextrin. The changes of enthalpy ($\Delta$H), entropy ($\Delta$S), and Gibbs free energy ($\Delta$G) were calculated to be 36.788 kJ/mole, 0.067 kJ/mole K. and 14.433 kJ/mole, respectively. The synthesis of maltosyl-$\beta$-CD could be increased substantially by the intermittent feeding of $\beta$-cyclodextrin. PEG 6000 could be separated effectively from reaction mixture using ultrafiltration membrane for reutilization.

  • PDF

Production of L-DOPA by Thermostable Tyrosine Phenol-lyase of a Thermophilic Symbiobacterium Species Overexpressed in Recombinant Escherichia coli

  • Lee, Seung-Goo;Ro, Hyeon-Su;Hong, Seung-Pyo;Kim, Eun-Hwa;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 1996
  • A thermostable tyrosine phenol-lyase gene of a thermophilic Symbiobacterium species was cloned and overexpressed in Escherichia coli in order to produce the biocatalyst for the synthesis of 3, 4-dihy-droxyphenyl-L-alanine (L-DOPA). The substrates used for the synthetic reaction were pyrocatechol, so-dium pyruvate, and ammonium chloride. The enzyme was stable up to $60^{\circ}C$, and the optimal temperature for the synthesis of L-DOPA was $37^{\circ}C$ . The optimal pH of the reaction was about 8.3. Enzyme activity was highly dependent on the amount of ammonium chloride and the optimal concentration was estimated to be 0.6 M. In the case of pyrocatechol, an inactivation of enzyme activity was observed at con-centrations higher than 0.1 M. Enzyme activity was increased by the presence of ethanol. Under op-timized conditions, L-DOPA production was carried out adding pyrocatechol and sodium pyruvate to the reaction solution intermittently to avoid substrate depletion during the reaction. The concentration of L-DOPA reached 29.8 g/l after 6 h, but the concentration didn t increase further because of the formation of byproducts by a non-enzymatic reaction between L-DOPA and pyruvate.

  • PDF

Kinetic Study on the Enzymatic Production of D-Alanine from D-Aspartic Acid

  • Lee, Jae-Heung;Sung, Moon-Hee;Jeon, Yeong-Joong
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • An enzymatic reaction for the production of D-alanine from D-aspartic acid and pyruvate as substrates by a thermostable D-amino acid aminotransferase (D-AAT) was investigated at various conditions In the temperature range of 40-70$\^{C}$ and pH range of 6.0-9.5. The D-AAT was produced with recombinant E. coli BL21, which hosted the chimeric plasmid pTLK2 harboring the D-AAT from the novel thermophilic Bacillus sp. LK-2. The enzyme reaction was shown to follow the Ping Pong Bi Bi mechanism. The K$\_$m/ values for D-aspartic acid and pyruvate were 4.38 mar and 0.72 mM, respectively. It was observed that competitive inhibition by D-alanine, the product of this reaction, was evident with the inhibition constant K$\_$i/ value of 0.1 mM. A unique feature of this reaction scheme is that the decorboxylation of oxaloacetic acid, one of the products, spontaneously produces pyruvate. Therefore, only a catalytic amount of pyruvate is necessary for the enzyme conversion reaction to proceed. A typical time-course kinetic study skewed that D-alanine up to 88 mM could be produced from 100 mM of D-aspartic acid with a molar yield of 1.0.

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic;Oros, Damir;Markovic, Iva;Kracher, Daniel;Ludwig, Roland;Santek, Bozidar
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1244-1252
    • /
    • 2013
  • Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.