• Title/Summary/Keyword: Enzymatic characterization

Search Result 295, Processing Time 0.021 seconds

Production and Characterization of Cholesterol Oxidase from Streptomyces sp. No.4 (방선균으로부터 Cholesterol Oxidase의 생산 및 특성)

  • 김현수;고희선
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.174-180
    • /
    • 1999
  • An actinomycetes strain No.4 which produce the cholesterol oxidase(EC 1.1.3.6), was isolated from soil and identified as Streptomyces sp. based on taxonomic studies. The conditions of cholesterol oxidase production and enzymatic properties were investigated. The optimum composition of medium for production of the enzyme was 1% soluble starch, 2% corn steep liquor, 0.1% $KH_2PO_4$, 0.1% $NaNO_3$ and 0.05% $MgSO_4$ (pH 7.0). The optimum pH and temperature of the cholesterol oxidase were pH 6.0~7.5 and $37^{\circ}C$, respectively. The enzyme was stable in the range of pH 6.0~9.0. The isoelectric point determined by multichambered electrofocusing unit was in the range of pH 6.0~6.5.

  • PDF

Expression of Porcine Acid-labile Subunit (pALS) of the 150-kilodalton Ternary Insulin-like Growth Factor Complex and Initial Characterization of Recombinant pALS Protein

  • Lee, Dong-Hee;Chun, Choa;Kim, Sang-Hoon;Lee, C.-Young
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.225-231
    • /
    • 2005
  • Acid-labile subunit (ALS) is a component of the 150-kDa insulin-like growth factor-binding protein-3 (IGFBP-3) complex, which, by sequestering the majority of IGFs-I and -II and thereby prolonging the half-life of them in plasma, serves as a circulating reservoir of IGFs in mammalian species. A pGEX-2T plasmid and a baculovirus expression constructs harboring a coding sequence for glutathione-S transferase (GST)-porcine ALS (pALS) fusion protein were expressed in BL21(DE3) E. coli and Sf9 insect cells, respectively. The expressed protein was purified by glutathione or Ni-NTN affinity chromatography, followed by cleavage of the fusion protein using Factor Xa. In addition, pALS and hIGFBP-3 were also produced in small amounts in the Xenopus oocyte expression system which does not require any purification procedure. A 65-kDa pALS polypeptide was obtained following the prokaryotic expression and the enzymatic digestion, but biochemical characterization of this polypeptide was precluded because of an extremely low expression efficiency. The baculovirus-as well as Xenopus-expressed pALS exhibited the expected molecular mass of 85 kDa which was reduced into 75 and 65 kDa following deglycosylation of Asn-linked carbohydrates by Endo-F glycosidase, indicating that the expressed pALS was properly glycosylated. Moreover, irrespective of the source of pALS, the recombinant pALS and hIGFBP-3 formed a 130-kDa binary complex which could be immunoprecipitated by anti-hIGFBP-3 antibodies. Collectively, results indicate that an authentic pALS protein can be produced by the current expression systems.

Purification and Characterization of Antioxidative Peptides from Bovine Skin

  • Kim, Se-Kwon;Kim, Yong-Tae;Byun, Hee-Guk;Park, Pyo-Jam;Ito, Hisashi
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • To identify the antioxidative peptides in the gelatin hydrolysate of bovine skin, the gelatin was hydrolyzed with serial digestions in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. The second enzymatic hydrolysate (hydrolyzed with pronase E) was composed of peptides ranging from 1.5 to 4.5 kDa, and showed the highest antioxidative activity, as determined by the thiobarbituric acid method. Three different peptides were purified from the second hydrolysate using consecutive chromatographic methods. This included gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an octadecylsilane chloride column. The isolated peptides were composed of 9 or 10 amino acid residues. They are: Gly-Glu-Hyp-Gly-Pro-Hyp-Gly-Ala-Hyp (PI), Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp-Gly (PII), and Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp (PIII), as characterized by Edman degradation and fast-atom bombardment mass spectrometry. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability with a methylthiazol tetrazolium assay The results showed that PII had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by the addition of the peptide. These results suggest that the purified peptide, PII, from the gelatin hydrolysate of bovine skin is a natural antioxidant, which has potent antioxidative activity.

  • PDF

Biochemical and Molecular Characterization of Glycerol Dehydrogenase from Klebsiella pneumoniae

  • Ko, Gyeong Soo;Nguyen, Quyet Thang;Kim, Do Hyeon;Yang, Jin Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • Glycerol dehydrogenase (GlyDH) catalyzes the oxidation of glycerol to dihydroxyacetone (DHA), which is the first step in the glycerol metabolism pathway. GlyDH has attracted great interest for its potential industrial applications, since DHA is a precursor for the synthesis of many commercially valuable chemicals and various drugs. In this study, GlyDH from Klebsiella pneumoniae (KpGlyDH) was overexpressed in E. coli and purified to homogeneity for biochemical and molecular characterization. KpGlyDH exhibits an exclusive preference for NAD+ over NADP+. The enzymatic activity of KpGlyDH is maximal at pH 8.6 and pH 10.0. Of the three common polyol substrates, KpGlyDH showed the highest kcat/Km value for glycerol, which is three times higher than for racemic 2,3-butanediol and 32 times higher than for ethylene glycol. The kcat value for glycerol oxidation is notably high at 87.1 ± 11.3 sec-1. KpGlyDH was shown to exist in an equilibrium between two different oligomeric states, octamer and hexadecamer, by size-exclusion chromatography analysis. KpGlyDH is structurally thermostable, with a Tm of 83.4℃, in thermal denaturation experiment using circular dichroism spectroscopy. The biochemical and biophysical characteristics of KpGlyDH revealed in this study should provide the basis for future research on its glycerol metabolism and possible use in industrial applications.

Purification and Characterization of Extracellular Aspartic Proteinase of Candida albicans

  • Na, Byoung-Kuk;Lee, Seong-Il;Kim, Sin-Ok;Park, Young-Kil;Bai, Gill-Han;Kim, Sang-Jae;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.109-116
    • /
    • 1997
  • An extracellular proteinase of Candida albicans was purified by a combination of 0~75% ammonium sulfate precipitation, DEAE Sepharose Fast Flow ion exchange chromatography, and Sephacryl S-200 HR molecular sieve chromatography. Its mlecular weight was approximately 41 kDa on SDS-PAGE and isoelectric point was 4.4. The enzyme was inhibited by pepstain A. Optimum enzyme activity ranged from pH 2.0 to 3.5 with its maximum at pH 2.5 and a temperature of 45$^{\circ}C$. The addition of divalent cations, $Ca^{2+}$, Zn$^{2+}$ and $Mg^{2+}$, resulted in no significant inhibition of enzymatic activity. However, some inhibitory effects were observed by Fe$^{2+}$, Ag$^{2+}$ and Cu$^{2+}$. With BSA as substrate, an apparent $K_m$ was determined to be 7$\times$10$^{-7}$ M and $K_i$, using pepstatin A as an inhibitor, was 8.05$\times$10$^{-8}$ M. N-terminal amino acid sequence was QAVPVTLXNEQ. Degradation of BSA and fibronectin was shown but not collagen, hemoglobin, immunoglobulin G, or lysozyme. The enzyme preferred peptides with Glu and Leu at the P$_1$ position, but the enzyme activity was highly reduced when the P$_2$ position was phe or pro. This enzyme showed antigenicity against sera of patients with candidiasis.

  • PDF

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

Characterization of Prophange Cured Strain Derivative from Lactobacillus casei YIT 9018 (Lcatobacillus casei YIT 9018로 부터 분리한 Prophage Cured Strain의 특성)

  • Lee, Jeong-Jun;Oh, Tae-Kwang;Chang, Hyo-Ihl;Baek, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.467-476
    • /
    • 1994
  • Lactobacillus casei HY 2782, prophage cured strain was characterized to be stable as much as L casei YIT 9018, parent strain. By southern hybridization, it was confirmed that the temperate phage was incorporated in chromosomal DNA of L. casei YIT 9018 as a prophage. It was also proved that the prophage was cured from chromosomal DNA of L casei HY 2782. The growth rate, lactic acid producing ability, carbohydrates fermentation, and enzymatic activity of L. casei HY 2782 were found to be similar to those of L. casei YIT 9018. When L casei HY 2782 was used as a host, the multiplicity of infection (M.O.I.) of the temperate phage for L. casei HY 2782 was 1.0~5.0. Restriction enzyme analysis of pLC90 plasmid from L. casei HY 2782 was shown that the size was an approximately 68.22 kb. The plasmid profiles, genomic DNA patterns, and cellular fatty acids composition of L. casei HY 2782 were similar to those of L casei YIT 9018. And the major fatty acids composition of these strains were C$_{14;0}$,C$_{16;1}$, C$_{16;0}$, C$_{18;1}$ and C$_{19;cyclo-}$ 10 sets of arbitrary primer in the PCR were screened to find differentiation against two strains of L. casei. Among them, b$_{5}-1/17-1 primer was produced an approximately 1.3 kb DNA band of only L casei YIT 9018. And b$_{5}-2/17-2 primer was produced an approximately 1.0 kb DNA band of only L casei HY 2782.

  • PDF

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952

  • Rimal, Hemraj;Subedi, Pradeep;Kim, Ki -Hwa;Park, Hyun;Lee, Jun Hyuck;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1750-1759
    • /
    • 2020
  • The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.

Expression of Cyclomaltodextrinase Gene from Bacillus halodurans C-125 and Characterization of Its Multisubstrate Specificity

  • Kang, Hye-Jeong;Jeong, Chang-Ku;Jang, Myoung-Uoon;Choi, Seung-Ho;Kim, Min-Hong;Ahn, Jun-Bae;Lee, Sang-Hwa;Jo, Sook-Ja;Kim, Tae-Jip
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.776-781
    • /
    • 2009
  • A putative cyclomaltodextrinase (BHCD) gene was found from the genome of Bacillus halodurans C-125, which encodes 578 amino acids with a predicted molecular mass of 67,279 Da. It shares 42-59% of amino acid sequence identity with common cyclomaltodextrinase (CDase)-family enzymes. The corresponding gene was cloned by polymerase chain reaction (PCR) and the dimeric enzyme with C-terminal 6-histidines was successfully overproduced and purified from recombinant Escherichia coli. BHCD showed the highest activity against ${\beta}-CD$ at pH 7.0 and $50^{\circ}C$. Due to its versatile hydrolysis and transglycosylation activities, BHCD has been confirmed as a member of CDases. However, BHCD can be distinguished from other typical CDases on the basis of its novel multisubstrate specificity. While typical CDases have over 10 times higher activity on ${\beta}-CD$ than starch or pullulan, the CD-hydrolyzing activity of BHCD is only 2.3 times higher than pullulan. In particular, it showed significantly higher activity ratio of maltotriose to acarbose than other common CDase-family enzymes.

Purification and Characterization of the External Invertase Constitutively Produced by Rhodotorula glutinis K-24 (Rhodotorula glutinis K-24에 의해 구성적으로 생산되는 세포외 Invertase의 정제 및 특성)

  • Choi, Mi-Jung;Kim, Chul;Lee, Sang-Ok;Lee, Tae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.368-375
    • /
    • 1990
  • Rhodoto& ghtbth~ K-24 was found to produce external invertase in addition to internal and cell wall bound invertase. External invertase was purified to an electrophoretically homogeneous state and partitally characterized and was compared with internal and cell wall bound invertase of which procedures for purification and characterization were reported previously. The enzyme was purified by ethanol precipitation, column chromatographies on DEAE-Sephadex A-50 and SP-Sephadex C-50, and gel filtration on Sephadex G-100. The molecular weight and subunit molecular weight of external invertasGwere estimated to be 220,000 and 100,000, respectively. The isoelectric point of the enzyme was about pH 6.0. The optimum pH and temperature for enzyme activity were pH 4.0 and $60^{\circ}C$, respectively. The enzyme remained stable at the wide range, from pH 3.0 to 11.0 and stable up to $40^{\circ}C$, but was inactivated at temperatures above that. $HgC_12, AgN0_3, MnS0_4$, SDS and p-CMB inhibited the enzyme activity. The $K_m$ value of the enzyme for sucrose was $1.0\times 10^{-2}$M. From these results, the three isozymes from Rh. glutinis K-24 seem to have the similar enzymatic properties, but to differ in molecular and subunit weights.

  • PDF