• Title/Summary/Keyword: Environmentally-friendly planning factors

Search Result 22, Processing Time 0.016 seconds

Organic Swine Production and Marketing in the Central United States -Present Situation and Farm Level Decision Factors-

  • Boessen, Christian R.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2001.10a
    • /
    • pp.192-206
    • /
    • 2001
  • A major challenge in the transition from conventional to organic production in a grain intensive region such as the Com Belt legion of the U.S.A. is how to profitably select and manage a crop relation. The opportunity cast of forgoing grain production for forage and green manure crops is significant. Many organic researchers and writers emphasize the need to bring an animal enterprise into the farming system for diversification and enhanced labor utilization. Livestock also add value to grain and forage crops to offset decreased grain production and can recapture nutrients used in crop production that can be recycled through manure. In grain intensive regions, organic farmers should consider swine production as a natural fit for the farming system. Swine are very efficient and adaptable animals that can add value to both grain and forage crops. While somewhat lacking, there is a reasonable body of literature on organic and sustainable swine production. However, there is relatively little specific information available to organic farmers to assist in the initial decision to enter organic swine production and to evaluate marketing alternatives. The primary focus of this paper is to give some background on organic animal production(emphasis on swine) in the Central United States and outline production and marketing decisions and considerations, relative to market trends, demographics and standards(U.S.). At the farm level, decisions must be made regarding resources, such as land, labor, financial and social capital, all relative to opportunities, all in the context of the standards and market forces beyond the farm. At the personal level the farmer must also make decisions about convictions regarding organic or environmentally friendly agriculture, willingness to change, impacts on lifestyle and family, and the transition to organic methods within the planning horizon of the farmer and the family business.

  • PDF

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.