• Title/Summary/Keyword: Environmentally Assisted Crack(EAC

Search Result 4, Processing Time 0.016 seconds

Environmentally Assisted Crack Growth Behavior of SA508 Cl.3 Pressure Vessel Steel

  • Kim, Jun-Hwan;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.154-159
    • /
    • 1998
  • In order to assess the susceptibility of the environmentally assisted cracking(EAC) on SA508 Cl.3 steel in primary water condition, potential step test and slow strain rate test(SSRT) were conducted in a simulated crack tip condition. In this test, anodic dissolution was dominant in the crack tip environments. Proposed simple dissolution model is a modification of Hishida's anodic dissolution model at the plastic zone. One can predict actual crack growth rate with the smooth specimen through this model.

  • PDF

Stress Corrosion Crack Rate of STS 304 Stainless Steel in High Temperature Water (고온수중에서 STS 304 스테인리스강의 응력부식균열 성장속도)

  • Kim, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.156-162
    • /
    • 2000
  • Sensitized STS 304 stainless steel crack growth rate(CGR) in high temperature water was investigated under trapezoidal wave loading test using fracture mechanics techniques. The CGR, due to stress corrosion cracking(SCC), were systematically measured as a function of the stress intensity factor and stress. holding time under trapezoidal wave loading. In high temperature water, CGR was enhanced by a synergistic effects in combination with an aggressive environment and mechanical damage. The CGR, $(da/dN)_{env}$ was basically described as a summation of the environmentally assisted crack growth rate $(da/dN)_{SCC}$, $(da/dN)_{CF}$ and fatigue crack growth rate in air $(da/dN)air,. The CGR, $(da/dN)_{env}$, increased linearly with increasing stress holding time. The CGR, $(da/dN)_{SCC}$ decreased linearly with increasing stress holding time. Fracture surface mode varied from trans-granular cracking to inter-granular cracking with increasing stress holding time.

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

Corrosion Fatigue Cracking of Low Alloy Steel in High Temperature Water

  • Lee, S.G.;Kim, I.S.;Jang, C.H.;Jeong, I.S.
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • Fatigue crack growth test or low alloy steel was performed in high temperature water. Test parameters were dissolved oxygen content. loading frequency and R-ratio ($P_{min}/P_{max}$). Since the sulfur content or the steel was low, there were no environmentally assisted cracks (EAC) in low dissolved oxygen(DO) water. At high DO, the crack growth rate at R = 0.5 tests was much increased due to environmental effects and the crack growth rate depended on loading frequency and maximized at a critical frequency. On the other hand, R = 0.7 test results showed an anomalous decrease of the crack growth rate as much different behavior from the R = 0.5. The main reason of the decrease may be related to the crack tip closure effect. All the data could be qualitatively understood by effects of oxide rupture and anion activity at crack tip.