• Title/Summary/Keyword: Environmental-friendly material

Search Result 445, Processing Time 0.022 seconds

Manufacturing and Characterization of Pulp Mold with Rice Husk Fiber (왕겨섬유를 포함한 펄프몰드 제조 및 특성 평가)

  • Kim, Hyung Min;Sung, Yong Joo;Park, Young Seok;Shin, Jea Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • The applicability of rice husk fiber as a raw material for eco-friendly pulp mold was evaluated in this study. The higher demand of environmental friendly packaging material resulted in the more interest for the natural fiber based pulp mold. The rice husk which is an abundant agricultural byproduct in Asia could be defiberized by an alkaline digestion process. The changes in the pulp mold making process and the properties of pulp mold by the addition of the rice husk were investigated. The addition of rice husk fiber to the pulp mold made with OCC or UBKP resulted in the increase in drainage at the pulp mold forming process. In case of UBKP pulp mold, the addition of rice husk fiber increased the drying efficiency after pulp mold forming since the structure of pulp mold became more bulkier by the addition of the rice husk fiber. Those results showed the rice husk fiber could be applied to the pulp mold manufacturing as one of the eco-friendly natural fiber resources.

An Experimental Study on the Evaluation of Physical Properties of Planting Porous Concrete using Industrial By-products. (산업부산물을 이용한 식생용 포러스콘크리트의 물성평가에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Taek-Woo;Kwon, Hyuk-Joon;Lee, Bong-Chun;Lee, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.929-934
    • /
    • 2001
  • As the notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Concrete having a great deal of continuous porosity enable water and air to pass freely through firmly hardened material, allowing necessary nutrients to reach roots of vegetation, thereby sustaining them. It is possible to prevent the exhaustion of natural resources by recycling waste concrete and industrial by-products, to reduce damage caused by the destruction of nature through effective management of natural resources, to preserve the natural environment and vegetation in urban areas by activating the soil, protecting the underground ecology system, and growing garden plants through the application of environmentally friendly concrete.

  • PDF

Sound Absorbing Melamine Foam: A Strong Environmental Friendly Tendency Opposing Glass Fiber of Room Using in China

  • Yan, Xiang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.462-462
    • /
    • 2010
  • Glass fiber is widely used in architectural acoustics or building acoustics for sound absorption since it was introduced into China for about 50 years. But recent years, with people pay more attentions to the air cleansing and their health which may be affected by the tiny fiber of the glasswool, a voluntary tendency opposing glass fiber of room using is gradual appeared in China. This paper discusses both the main opinions towards the question whether there are harmful impacts on people health from glassfiber, and the application circumstance of it's applying in china. This paper focuses on another substitute sound absorbing material, melamine foam, to discuss the strong environmental friendly tendency opposing glass fiber of room using in China now.

  • PDF

A Study on Electric Properties and Accelerated Water Tree Degradation of Environmental-friendly Non-crosslinked Polyethylene (친환경 비가교 폴리에틸렌의 전기적 특성과 워터트리 가속열화에 관한 연구)

  • Lee, June-Ho;Kong, Tae-Sik;Kim, Seong-Jung;Kwon, Ki-Hyung;Lee, Jae-Soon;Gu, Gwang-Hoe;Cho, Kyu-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.827-832
    • /
    • 2012
  • The crosslinked polyethylene (XLPE) is the most widely used insulating material for power cable. Due to its thermosetting characteristics, the XLPE can not be recycled, while the needs for the environmental friendly and recyclable insulator is rapidly increasing. In this paper, some important and basic electrical properties of non-crosslinked polyethylene such as conduction current characteristics, water the tree characteristics, AC breakdown test were experimentally investigated. It was shown that some of the tested samples had better performances from the application point of view for replacing current XLPE.

A Study on the Environmentally-friendly Design Techniques Extract and Applying Modern of Traditional Residential Area - The Case of Dokrakdang in Kyungbuk Province - (전통주거공간의 환경친화적 설계기법 추출 및 현대적 적용 - 경상북도 독락당을 사례로 -)

  • Heo, Jun;Song, Byeong Hwa
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • The aim of this study, a traditional residential area in the environmentally friendly design techniques to identify the techniques and principles that have been carried out to reestablish the principles. To do this, through literature review environmental performance is reflected in the traditional residential area side of resources conservation, locational aspects, spatial configuration, and how cases were selected looking for ways to apply modern. Are examples of upper class housing in the Chosen Dynasty Period period construction relatively well-preserved round and a good building with a clear housing Dokrakdang year were selected. Locational aspects of the terrain with minimal changes to the building and construction techniques were entirely in terms of environmental conservation and environmental temperature was adjusted to regulate the room temperature technique could be seen. In terms of cycling in natural materials were recycled. and water make used of positive through water cycling technique & water control. In addition, the importance of landscape views overlooking the landscape from inside to outside through the regulation of the various internal and external space technique was used to attract and expand. Traditionality in the pursuit of modern space, simply cut off because of tradition rather than to restore or recover the organizing principle inherent in the traditional space, and extraction of the contemporary social, cultural and environmental understanding of space is acceptable in basis. Environmentally-friendly design techniques in a traditional residential area for a long time to be developed by the experience of its application of modern environmental and energy problems and pleasant environment to the creation of human life and are subject to significant swings in that.

An Experimental Study on Strength Characteristics of Clay Mixed with Organic Acid Ground Improvement Material (유기산계 지반개량재를 혼합한 점토의 강도 특성에 관한 실험적 연구)

  • Im, Soyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, it was examined a strength characteristic of organic acid material that is eco-friendly and low energy as a soil improving material. The object of this study is to analysis of strength changes with observing the clay mixed organic acid material through the unconfined compression strength test and triaxial compression test during 28 days. As a result of the tests, the strength of clay mixed organic acid material is increased when the more ages are prolonged, the more organic acid material mixture ratio growed. Therefore, in grasping the strength improvement effects of clay by organic acid material mixing, it confirmed that organic acid material as soil improving material is effective through unconfined compression strength test and triaxial compression test. Through this test, the definite strength increase is confirmed according to the mixture of the organic acid material and the possibility of soil improvement is also confirmed based on this result. From now on, detailed examination and field test will help closely to definite strength characteristics.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

Life Cycle Assessment(LCA) of Rolling Stock (철도차량시스템의 전과정평가(LCA))

  • Kim Yong-Ki;Yoon Hee-Taek;Jung Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.533-538
    • /
    • 2004
  • Rolling Stock life cycle can not provide weakness of environment due to the absence DB on about environment information for contaminant, expense analysis on each step which consists of raw material-design-manufacture-running-waste step. In order to estimate environmental impacts on LCA for rolling stock system, scientifically and internationally fair standards of assessment method for pursuing environmental friendly in environment regulation policy, application of LCA system is proposed and introduced in the present paper.

  • PDF

A study on The Space Planning of Housing type Accomodations for Leisure (여가전용 주택형 숙박시설의 내부공간계획 연구)

  • Kim, Kook-Sun;Lee, Yun-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.177-180
    • /
    • 2005
  • In accordance with recent highly advanced economic growth, the demand of leisure life is quite increasing, and also the increase of nature-friendly leisure with health-pursuing concept where human -being enjoys pleasant environment, is to me said as one of recent social traits. Accordingly, it is research the present situation and characteristic of the popularized housing-type accommodating facility, and then this study has discussed on the method how to plan the interior space of such facility to meet with environmental -friendly peculiarity and the object for health enhancement. At first, the program which applied the sustainable design techniques should be preceded, and when planning of interior space, the management method and space planning on the facility and the system should be properly considered in order to enhance the user's health. So to speak, in order to keep and promote the space user's health, those proposing methods such as the followings have been suggested likely as, consideration regarding to air-ventilation and lighting, usage of environmental-friendly material, use of life drainage, custom-typed plane planning, utilization of balcony space, storing furniture and systemization of kitchen space, themed bathroom, inducement of indoor-gardening, and so on. It is expected that this could be applied very usefully to the space plan of the small-scaled housing-type accommodation under planning to develop or renovation.

  • PDF

Stabilization Mechanism for Sands Treated with Organic Acids from Laboratory Tests (유기산 재료를 이용한 사질토의 안정화 메커니즘에 관한 연구)

  • Ki, Jungsu;Yee, Eric;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • The field of ground amelioration, many construction methods have been developed more prosperously up to now, but even now, the majority focuses on the improvement of ground strength. And they could not suggest concrete solutions to the occurrence of environmental issues. To address this problem, soil improvement methods employing organic acid materials have recently been developed as eco-friendly technologies for increasing the soil strength, but details regarding the basic stabilization mechanism are not known yet. Against this background, this research was conducted to examine the soil stabilization mechanism; for this purpose, unconfined compressive strength and pH tests were conducted by using an improved eco-friendly organic acid material. The test results revealed that the samples processed with the organic acid showed a considerable increase in the unconfined compressive strength over time as compared to the strength of the samples that were processed without the organic acid. It was also confirmed that the organic acid material promoted microbial breeding and improved the soil structure by reducing the volume of the voids in the soil. Therefore, the sustainable development of this method needs to be analysed more in the future.