• 제목/요약/키워드: Environmental organization

검색결과 1,115건 처리시간 0.03초

천연(天然)가스 자동차(自動車) 보급(普及) 확대(擴大)를 위(爲)한 경제성(經濟性) 분석(分析)과 정책지원(政策支援) 개선(改善)에 관(關)한 연구(硏究) - 대형(大型) 경유(輕油)버스를 중심(中心)으로 (A Study on Economic Analysis and Improvement Policy Support for the Expansion of Natural Gas Vehicles - Focused on the Large Diesel Bus)

  • 주길모;강승진
    • 한국가스학회지
    • /
    • 제21권6호
    • /
    • pp.70-80
    • /
    • 2017
  • 매년 OECD가 발표하는 대기환경 오염분야에서 우리나라가 최하위를 차지했다. 이에 따른 대책으로 수송분야에 관심이 집중되었고, 오염도 측정 결과 대형경유 및 노후차량에서 미세먼지 배출가스가 높게 발생하는 원인으로 정부는 발표하였다. 이를 해결하기 위해 정부가 관련부처 합동으로 "미세먼지 관리 특별대책과 종합대책"을 추진하였다. 환경오염 개선방안으로 시내버스와 전세버스를 대상으로 친환경자동차 전환을 위한 유가 보조금제도를 시행했다. 본 연구에서는 경유버스 대비 천연가스(CNG) 연료전환 시 경제성 평가와 오염물질 배출에 따른 환경비용을 비교분석하였다. 유형별 연료전환 시나리오를 통한 천연가스 차량으로 연료전환을 했을 때 사회적 편익과 환경적 비용을 고려한 정부지원금 정책의 타당성 및 지원금 확대 근거를 제시하였다.

Genetic Variants of IL-13 and IL-4 in the Korean Population: Polymorphisms, Haplotypes and Linkage Disequilibrium

  • Ryu, Ha-Jung;Jung, Ho-Youl;Park, Jung-Sun;Kim, Jun-Woo;Kim, Hyung-Tae;Park, Choon-Sik;Han, Bok-Ghee;Koh, In-Song;Park, Chan;Kimm, Ku-Chan;Oh, Berm-Seok;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.149-153
    • /
    • 2005
  • Asthma is an inflammatory airways disease characterized by bronchial hyperresponsiveness and airways obstruction, which results from a complex interaction of genetic and environmental factors. Interleukin (IL)-13 and IL-4 are important in IgE synthesis and allergic inflammation, therefore genes encoding IL-13 and IL-4 are candidates for predisposition to asthma. In the present study, we screened single-nucleotide polymorphisms (SNPs) in IL-13 and IL-4 and examined whether they are risk factors for asthma. We resequenced all exons and the promoter region in 12 asthma patients and 12 normal controls, and identified 18 SNPs including 2 novel SNPs. The linkage disequilibrium(LD) pattern was evaluated with 16 common SNPs, and haplotypes were also estimated within the block. Although IL-13 and IL-4 are localized within 27 kb on chromosome 5q31 and share many biological profiles, this region was partitioned into 2 blocks. One SNP and three SNPs were determined as haplotype-taggingSNPs (htSNPs) within IL-13 and IL-4 haplotype-block, respectively. No significant associations were observed between any of the SNPs or haplotypes and development of asthma in small number of Korean subjects. However, the genetic variants of IL-13 and IL-4 would provide valuable strategies for the genotyping studies in large population.

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

StrokeBase: A Database of Cerebrovascular Disease-related Candidate Genes

  • Kim, Young-Uk;Kim, Il-Hyun;Bang, Ok-Sun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.153-156
    • /
    • 2008
  • Complex diseases such as stroke and cancer have two or more genetic loci and are affected by environmental factors that contribute to the diseases. Due to the complex characteristics of these diseases, identifying candidate genes requires a system-level analysis of the following: gene ontology, pathway, and interactions. A database and user interface, termed StrokeBase, was developed; StrokeBase provides queries that search for pathways, candidate genes, candidate SNPs, and gene networks. The database was developed by using in silico data mining of HGNC, ENSEMBL, STRING, RefSeq, UCSC, GO, HPRD, KEGG, GAD, and OMIM. Forty candidate genes that are associated with cerebrovascular disease were selected by human experts and public databases. The networked cerebrovascular disease gene maps also were developed; these maps describe genegene interactions and biological pathways. We identified 1127 genes, related indirectly to cerebrovascular disease but directly to the etiology of cerebrovascular disease. We found that a protein-protein interaction (PPI) network that was associated with cerebrovascular disease follows the power-law degree distribution that is evident in other biological networks. Not only was in silico data mining utilized, but also 250K Affymetrix SNP chips were utilized in the 320 control/disease association study to generate associated markers that were pertinent to the cerebrovascular disease as a genome-wide search. The associated genes and the genes that were retrieved from the in silico data mining system were compared and analyzed. We developed a well-curated cerebrovascular disease-associated gene network and provided bioinformatic resources to cerebrovascular disease researchers. This cerebrovascular disease network can be used as a frame of systematic genomic research, applicable to other complex diseases. Therefore, the ongoing database efficiently supports medical and genetic research in order to overcome cerebrovascular disease.

Association between Prostaglandin-endoperoxide Synthase 2 (PTGS2) Polymorphisms and Blood Pressure in Korean Population

  • Jin, Hyun-Seok;Hong, Kyung-Won;Lim, Ji-Eun;Han, Hye-Ree;Lee, Jong-Young;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.110-116
    • /
    • 2008
  • Blood pressure refers to the force exerted by circulating blood on the walls of blood vessels, and chronical elevation of blood pressure is known as hypertension. Although hypertension is affected by genetic and environmental factors, the genetic background of hypertension is not fully understood. One of the candidate genetic factors, Prostaglandin-endoperoxide synthase 2 (PTGS2), is a membrane-bound enzyme, catalyzing the conversion of arachidonic acid to prostaglandin, and recently SNPs of PTGS2 gene was associated with hypertension in Japanese population. Therefore the association of PTGS2 polymorphisms was investigated with blood pressure in healthy Korean subjects, 470 unrelated individuals randomly selected from Ansung and Ansan cohorts. The 25 SNPs of PTGS2 gene were identified by the sequencing analysis of 24 Korean samples. Among identified polymorphisms, three SNPs (rs689466, -1329A>G; rs5275, +6365T>C; rs4648308, +8806G> A) were selected for further association analysis, and rs689466 located in promoter region was associated with blood pressure as well as triglyceride level in the blood. By in silico analysis, rs689466 locates in v-Myb transcription factor binding site, and the v-Myb site disappears when the SNP is changed from A to G nucleotide. Individuals with A/G and G/G genotype in rs689466 have higher blood pressure than those with A/A genotype, and the regression p-value is 0.008 for systolic and 0.004 for diastolic blood pressure. In summary, the PTGS2 polymorphism (rs689466) is associated with blood pressure in Asian populations based on this and Japanese studies, shedding light on it as a genetic risk marker of hypertension.

PAGE 모델을 이용한 한국 기후변화의 피해비용 분석 (Preliminary Analysis of Climate Change Damage in Korea Using the PAGE Model)

  • 채여라
    • 환경정책연구
    • /
    • 제9권1호
    • /
    • pp.31-55
    • /
    • 2010
  • 기후변화 정책 분석 모델 (PAGE, Policy Analysis of Greenhouse Effect)을 이용해 여러 온실가스 배출 시나리오에 따른 기후변화의 피해 비용을 분석했다. 국내외 기후변화 영향에 관한 선행 연구 결과에 따르면 한국의 기후변화의 민감도는 경제 협력개발기구(OECD) 회원국들과 유사한 수준이 될 것으로 전망되었으나 구체적인 한국의 분야별 영향평가가 이루어져야 보다 정량적인 기후변화의 피해함수 추정이 가능할 것이다. 온실가스 배출량, 이산화황 배출량, 적응정책의 정도, 경제 성장, 인구 성장 등 많은 인자들이 기후변화로 인한 피해 정도에 영향을 미친다. 본 연구에서는 PAGE 모델을 이용해 미래의 여러 상황에 따른 기후변화의 피해 정도를 알아보기 위하여 A2, B1, Kyoto, 3가지 시나리오에 대한 분석을 하였다. 만일 전 세계가 온실가스 감축을 위한 아무 대책도 실행하지 않는다면 2100년 한국은 약 3도 정도의 온도상승이 예측되고 이로 인해 12조에서 58조정도의 피해가 일어날 것으로 분석되었다. 1990년에서 2100년까지 기후변화로 인한 누적 피해비용은 약 143조에서 921조에 이를 것으로 분석되었다.그러나 이는 소수의 피해함수에 대한 연구결과만을 반영해 산정한 결과며 분야별로 더 많은 연구가 수행되어야 보다 신뢰도 높은 피해비용을 산정할 수 있다.

  • PDF

기후변화에 따른 미래 하천 수온 예측을 위한 비선형 기온-수온 상관관계 구축 (Building a Nonlinear Relationship between Air and Water Temperature for Climate-Induced Future Water Temperature Prediction)

  • 이길하
    • 환경정책연구
    • /
    • 제13권2호
    • /
    • pp.21-38
    • /
    • 2014
  • 지구의 온난화로 인하여 기온이 상승하고 이에 대응하여 수온 증가가 감지되고 있다. 하천의 수온 변화는 수질과 생태계, 특히 용존산소변화와 생물체의 이동으로 이어진다. 기온 변화가 하천의 수질과 생태 환경에 미치는 영향을 추정하기 위해서 수온 상승의 시기와 하천 어종에 대한 이해가 필요한데 이를 위하여 미래의 수온을 예측할 필요가 있다. 환경부 산하 국립환경과학원에서 설치한 국가수질관측망 자료와 기상청 기상관측소의 기온 자료를 활용하여 기온-수온 비선형 상관관계모형을 구축하였다. 기온-수온 대표 관계인 비선형 로지스틱(Logistic) 함수에 포함된 4개의 매개변수를 결정하기 위하여 SCE최적화 기법을 이용하였다. 기온-수온 상관관계는 시간규모에 따른 최대 온도와 최소 온도에 차이가 있으나 수질 또는 생태 반응의 적당한 시간규모에 해당하는 주 평균 온도를 이용하여 분석하였다. 전반적으로 우리나라 하천의 기온-수온 관계는 선형보다는 비선형 모형에서 NSC와 RMSE가 더 우수하여 비선형 모형이 적합한 것으로 나타났다. 연구 결과는 미래의 기온 상승 변화에 반응하는 수질, 수문 및 생태반응에 대비하여 공학기술자 또는 정책입안자에게 적절한 기후변화 대책 방향을 설정하는 데 지침을 제공할 것이다.

  • PDF

제2기 새천년 개발계획과 국제보건역량강화 (Build Capacity for International Health Agenda on the "Transforming Our World: The 2030 Agenda for Sustainable Development")

  • 박윤형
    • 보건행정학회지
    • /
    • 제25권3호
    • /
    • pp.149-151
    • /
    • 2015
  • United Nations (UN) adopted 17 global sustainable development agenda to the year 2030 in the 68th general assembly on september, 2015. The global agendas and goals are important for 3 reasons: (1) to adopt the international standard for determining the health status; (2) to identify areas in need of attention; and (3) to advance international cooperation regarding health issues. In the area of infectious diseases, our goals include the eradication of human immunodeficiency virus infection and acquired immune deficiency syndrome, tuberculosis, and malaria as well as a substantial reduction of hepatitis by the year 2030. In the area of non-communicable diseases, our goal is to reduce premature mortality (${\leq}70years$) at least 30% by the year 2030. Preventive activities such as smoking cessation, alcohol abstinence, nutritional measures, and physical activities, should also be promoted intensively nationwide. It is also necessary to establish stringent policies for control hypertension, diabetes, obesity, and hypercholesterolemia. Additionally, environmental health, injury by traffic accident, mental health, and drug and alcohol abuse are important health policies. Furthermore, in the area of international health and cooperation, maternal and child health remain important areas of support for underdeveloped countries. Education and training towards the empowerment of health professionals in underdeveloped countries is also an important issue. The global agenda prioritize resources(manpower and budget) allocation of international organizations such as UN, World Health Organization, United Nations Development Programme, and World Bank. The global agenda also sets the contribution levels of Official Developmental Assistance donor countries. Health professionals such as professors and researchers will have to turn their attention to areas of vital international importance, and play an important role in implementation strategies and futhermore guiding global agenda.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.