• Title/Summary/Keyword: Environmental control systems

Search Result 1,224, Processing Time 0.027 seconds

A Study on the Development of Power Control Wireless Interface Module for Demand_Response using IEEE1451.5 (IEEE1451.5 기반의 전원 제어용 무선 DR_인터페이스 장치 개발에 관한 연구)

  • Lee, Joung-Han;Choi, In-Ho;Ryu, Joong-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1192-1196
    • /
    • 2009
  • Recently, the environment contamination problem and energy saving are the social issues. So, the Green IT based Smart Grid was suggested. The smart grid will let rates fluctuate even more dynamically, depending on conditions using energy. Thus, green IT includes the dimensions of environmental sustainability and the economics of energy efficiency. The smart controller in which it is controlled by DR in order to manage the energy consumption by using AMI is needed in order to apply its technology to the real life. In this paper, DR_WTIM of the IEEE1451.5 base which has the DR function for connecting to AMI of the wireless base is developed. By using this apparatus for the power control system, the energy saving effect is shown. Moreover, by using the IEEE1451.5 technology, the problem of energy consumption is solved in order to apply to power controller designed for efficient use energy.

Design and Analysis of an Interactive Motion Simulator in Space Entertainment System

  • Hsu, Kuei-Shu;Cho, Wei-Ting;Lai, Chin-Feng;Wang, Xiaofei;Huang, Yueh-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.446-467
    • /
    • 2012
  • In this paper, the analysis and design of a motion simulator (based on the approach taken by interactive virtual reality (VR) entertainment systems) is conducted. The main components of the system include a bilateral control interface, simulation and a motion simulator control scheme. The space entertainment system uses a virtual environment that enables operators to feel the actual feedback sensing and distorted motion from the virtual environment, just as they would in the real environment. The space entertainment system integrates the dynamics of the motion simulator and the virtual environment and the operator maneuvers a steering wheel to interact with the system. The multiple bilateral control schemes employ a dynamical controller, which is designed by considering the velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator. In addition, we develop a calculated method to evaluate the Ratio of the simulation results. It is shown that the proposed control scheme can improve the performance of the visual entertainment system. Experiments are conducted on the virtual reality entertainment system to validate the theoretical developments.

Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm

  • Chen, ZY;Meng, Yahui;Wang, Ruei-Yuan;Peng, Sheng-Hsiang;Yang, Yaoke;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.591-598
    • /
    • 2022
  • The article deals with the possibilities of vibration stimulation. Based on the stability analysis, a multi-scale approach with a modified whole-building model is implemented. The motion equation is configured for a controlled bridge with a MDOF (multiple dynamic degrees of freedom) Tuned Mass Damper (M-TMD) system, and a combination of welding, excitation, and control effects is used with its advanced packages and commercial software submodel. Because the design of high-performance and efficient structural systems has been of interest to practical engineers, systematic methods of structural and functional synthesis of control systems must be used in many applications. The smart method can be stabilized by properly controlling the high frequency injection limits. The simulation results illustrate that the multiple modeling method used is consistent with the accuracy and high computational efficiency. The M-TMD system, even with moderate reductions in critical pressure, can significantly suppress overall feedback on an unregulated design.

Remote structural health monitoring systems for next generation SCADA

  • Kim, Sehwan;Torbol, Marco;Chou, Pai H.
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.511-531
    • /
    • 2013
  • Recent advances in low-cost remote monitoring systems have made it possible and practical to perform structural health monitoring (SHM) on a large scale. However, it is difficult for a single remote monitoring system to cover a wide range of SHM applications due to the amount of specialization required. For the remote monitoring system to be flexible, sustainable, and robust, this article introduces a new cost-effective, advanced remote monitoring and inspection system named DuraMote that can serve as a next generation supervisory control and data acquisition (SCADA) system for civil infrastructure systems. To evaluate the performance of DuraMote, we conduct experiments at two representative counterpart sites: a bridge and water pipelines. The objectives of this article are to improve upon the existing SCADA by integrating the remote monitoring system (i.e., DuraMote), to describe a prototype SCADA for civil engineering structures, and to validate its effectiveness with long-term field deployment results.

An Improvement of Voltage Disturbances for Fuel Cell Systems (연료 전지 시스템의 전압왜란 개선)

  • Moon Hyun-Wook;Jeong Eun-Jin;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.245-252
    • /
    • 2005
  • The fuel cell systems are one of very useful energy sources. The systems have advantages as renewable and environmental sources. To obtain AC components from fuel cells, it needs inverters. A multilevel converter is used as a power conversion system for a high power fuel cell system. Through harmonic analysis, it is shown that the harmonic components and THD increase while a fundamental component of output decreases as voltage droop increases. To solve the voltage disturbance problems, three different approaches are investigated in this paper; installation of a boost converter at the fuel cell output, control of pulse widths, and use of ultracapacitors. The proposed three approaches are analyzed and compared through simulation and experimental results.

Comparative Analysis of the PWM of an Inverter for an Electric Aircraft Thrust Motor

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2021
  • As global environmental regulations have been strengthened, the eco-friendly market has grown rapidly. In the field of aircraft, research on electric vertical take-off and landing aircraft that can enter city centers and perform personal air transportation using electric propulsion is ongoing. For aircraft using electric propulsion methods to operate reliably, electric power thrust systems are a key factor. Electric aircraft require a high power density for propulsion systems with strict limits on volume and weight. The efficient control of inverter systems is essential for achieving high power density. Therefore, in this paper, the characteristics of inverters and motors were analyzed through simulations based on the space vector pulse width modulation (PWM) and discontinuous PWM methods for controlling inverter systems.

Development of Urban Information Platform for Cross-Domain Urban Design

  • Sota SEKI;Kaede FUJITA;Manabu ICHIKAWA
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.335-342
    • /
    • 2024
  • This research developed an urban information platform to enable holistic urban design across multiple disciplines and regions, addressing Japan's urban challenges. By aggregating a wide range of urban data into a geographic database, the study emphasizes data-driven decision-making in urban planning. The platform supports the visualization and analysis of critical domains like medical and water supply, enhancing decision-making processes. Key contributions include the creation of evaluation indicators and the demonstration of the platform's application in urban design discussions.

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

A study on the autonomous control system for an unmanned surface vessel?

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.417-420
    • /
    • 2004
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environment monitoring mission, many ocean engineers had scoped with the routine and even risky works. The automatic system can replace the periodic and routine missions: water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for routine and periodic ocean environmental missions. An autonomous control system was designed and tested for the unmanned vessel. A GPS and gyro compass was used for navigation. A linear autopilot model for course control can be derived from the maneuvering model. Nomoto's 2nd-order response equation was derived. The design methodologies and performance of the surface vessel were illustrated and verified with this linearized equation of motion. A linear controller was designed and automatic route tracking performance was verified for yaw subsystem.

  • PDF